物理学-物理数学

ラプラシアン(極座標・円筒座標)の計算はヤコビアンを使うと簡単

極座標のラプラシアンPOINT 数行でラプラシアン,divを計算する方法(極座標・円筒座標). 面倒な偏微分の計算(連鎖率・チェーンルール・合成関数の微分)は不要. 【前提知識】 極座標・円筒座標のナブラ(grad)の表式. 積分の変数変換の方法(ヤコビアン…

「テンソル記法」から「ベクトル解析の記法」への変換方法

POINT テンソル演算で得られた結果を,ベクトル解析の記法に書き換える方法. テンソル解析ではベクトルの変換則を$\displaystyle A^{\prime\mu}=\frac{\partial x^{\prime\mu}}{\partial x^\nu}A^\nu$で定めるが,この計算で得られる成分はベクトル解析で扱…

【実用例】面積・体積の計算法

POINT 面積・体積の計算を丁寧に解説. 同じ例を複数の方法で計算する方法を紹介. 公式として覚えているものも,同じプロセスで導かれることを見てみましょう.いつでも導出できるようになると便利です.とりあえずは球を中心に作成しました.他の例も,こ…

無次元化が必要な理由と方法〜数値計算の疑問

POINT 無次元化が必要な理由とその方法についてまとめる. 無次元化の効果(メリット): 方程式に現れる変数が減り,簡単な形になる. 方程式の解が相似になる条件がわかる. 数値計算では,適切な無次元化によって変数が極端に小さい値/大きい値を取ること…

テンソルと行列が混同される理由

POINT ざっくり言えば,「テンソルの成分」と呼ばれる量を「行列の形」に並べると(表記や計算で)便利なことがある,というのが一つの答え.背景には,もう少し深い性質がある. 主な混乱の原因は,「行列の成分」が「2階のテンソル(1階反変1階共変テンソ…

テンソルの変換則とその導出

POINT 基底の変換則から,高階のテンソルの変換則が導かれる. 導出した変換則を一覧として整理した. 以前の記事で, 「線形空間$V$の基底・双対基底の変換則」から,自然に「反変・共変ベクトルの変換則」が導かれること を示しました.この議論を一般化す…

反変・共変ベクトルの変換則〜双対空間から理解する

POINT 双対空間は「相対論の共変ベクトル」や「量子力学のブラベクトル」として特に説明なく導入されている. 双対空間を学べば,共変ベクトルの変換則が自然に導かれる. ある線形空間 (ベクトル空間) に対し定義される「双対空間」は,物理の様々な場面で …

ラプラシアンの計算はヤコビアンを使うと簡単

POINT 数行でラプラシアンやdivを計算できる方法(曲線座標). 合成関数の微分(連鎖率・チェーンルール)なしで計算できる. より一般の曲線座標(曲がった空間)でも同じ方法が使える. ちまちま偏微分の計算をするのではなく,積分計算に置き換えてしま…

等長変換:回転・反転・Lorentz変換

POINT ユークリッド空間の距離を保つ変換は「回転」と「反転」で表される. ミンコフスキー空間の距離を保つ変換はLorentz変換となる. 距離を保つ変換が「回転」と「反転」で表されることはよく知られています.但し,これは「ユークリッド空間」での話です…

【例】収束因子

POINT 数学的に収束因子が正当化される例の紹介. 物理においては,実験との比較によって正当化される. 物理では,広義積分の計算において収束因子を掛けて収束性を良くし,最後に収束因子の影響を除く操作を行うことがあります.この操作が正当化されるの…

曲面積の求め方

POINT 定義さえ理解しておけば,(派生)公式を覚えなくても計算できる. 具体例として,回転体の表面積の派生公式などを導く. 曲面積の定義 派生公式 球の表面積 グラフの曲面積($X=x$, $Y=y$, $Z=f(x,y)$) $y=f(x)$の回転体($X=x$, $Y=f(x)\cos\theta$…

スターリングの公式の表式について

POINT スターリングの公式の異なる2つの表式の関係. 統計力学でよく出てくるStirlingの公式について考察します. スターリングの公式の2つの表式 式 (1)の導出 2式の関係について 付録 計算メモ スターリングの公式の2つの表式スターリングの公式(Stirling…

ベクトル解析の公式

POINT ベクトル解析の公式と,その導出方法の一覧. 行列計算も統一的に理解できる. ベクトル解析の公式と,その導出方法を一覧にまとめました.力学・電磁気学・流体力学などを学ぶ上で,これらの計算はとても重要です.計算練習をして,すぐに公式を導出…

完全反対称テンソルの縮約公式

完全反対称テンソルの縮約POINT 「完全反対称テンソル(レビ・チビタ記号,エディントンのイプシロン)の縮約公式」を簡単に導出する方法. この公式は,ベクトル解析の計算で欠かすことができない. ベクトル解析の重要な公式に,『完全反対称テンソル(レ…

ベッセル関数の関係式

POINT ベッセル関数の関係式. 積分表示 平面波 参考文献 積分表示積分表示 Besselの積分表示: $J_n(x)$$\displaystyle =\frac{1}{2\pi}\int_{0}^{2\pi} \cos\bigl(x\sin\theta-n\theta\bigr)\,\mathrm{d}\theta$ Hansenの積分表示: $J_n(x)$$\displaystyl…

直交曲線座標系の微分公式(grad, div, rot)

POINT 直交曲線座標系の微分公式(grad, div, rot)の一般式を導出する. 計算方法が丁寧に記されているものが見つからなかったので,詳しく計算してみました.もっと簡単な方法が見つかれば追記します. 線素 勾配(grad) 発散(div) 回転(rot) 基底の…

ちょっと感動した計算

POINT 個人的にすごい!と思った計算の備忘録です. 覚えておくと応用がきくかもしれません. ラプラシアンの計算 ラプラシアンの計算ラプラシアンの計算\begin{aligned} \boldsymbol{\nabla}^2 f(r) &=\biggl( \frac{\mathrm{d}^2}{\mathrm{d} r^2} +\frac{…

軸対称な波動方程式(ベクトルポテンシャル)

POINT 軸対称な場のベクトルポテンシャルが満たす波動方程式を考察する. $\boldsymbol{\nabla}\times\boldsymbol{A}$が$z$軸に対して軸対称性をもち,$(\boldsymbol{\nabla}\times\boldsymbol{A})_{z} = 0$を満たす場合考えます. 円筒座標 極座標 参考文献/…

ベクトルラプラシアン

POINT 作成中...(未完成,未検算) ベクトルラプラシアンの計算方法と注意点. ベクトルラプラシアンとは 一般式 円筒座標 極座標 参考文献/記事 ベクトルラプラシアンとはベクトルラプラシアンベクトル場(ベクトル値関数)$\boldsymbol{A}(\boldsymbol…

共変微分の計算法

POINT 作成中... 計算ルール 計算例 反変ベクトル リーマン曲率テンソル 参考文献 計算ルール 成分への作用:$\boldsymbol{\nabla}_\mu T^{\alpha_1\cdots \alpha_p}_{\:\:\:\:\:\:\:\:\:\:\: \beta_1\cdots \beta_q}=\partial_\mu T^{\alpha_1\cdots \al…

電場の複素表示

記法 電場 パルス $G_{2}(\tau)$ 参考文献 【関連記事】 時間平均 - Notes_JP 記法$g(t)$のフーリエ変換\begin{aligned} \mathcal{F}[g](\Omega) &=\int_{-\infty}^{\infty} g(t) e^{-i\Omega t} \,\mathrm{d}t \end{aligned}$g(\Omega)$のフーリエ逆変換\be…