POINT
波動方程式を満たす関数には,エネルギー保存則が成り立ちます.- 作成中(編集上の都合により公開)
- 波動現象という観点でエネルギー保存則を整理する.
- 音波,電磁気学,量子力学
音波や真空中の電磁波は波動方程式を満たすことから,これらのエネルギー保存則を統一的に理解することを試みました.
電磁気で,Maxwell方程式をもとにエネルギー保存則を論じる方法:
電磁場の保存則 - Notes_JP
波動方程式とエネルギー保存則
波動方程式\begin{aligned}
\frac{1}{c^2}\frac{\partial^2 \phi}{\partial t^2}
-\Delta \phi
=0
\end{aligned}
に対して,エネルギーを\frac{1}{c^2}\frac{\partial^2 \phi}{\partial t^2}
-\Delta \phi
=0
\end{aligned}
\begin{aligned}
E(t)=\frac{1}{2}\int_V
\biggl[ \biggl(\frac{1}{c}\frac{\partial \phi}{\partial t}(\boldsymbol{x},t)\biggr)^2
+|\boldsymbol{\nabla} \phi(\boldsymbol{x},t)|^2 \biggr]
\,\mathrm{d}V
\end{aligned}
で定めると,E(t)=\frac{1}{2}\int_V
\biggl[ \biggl(\frac{1}{c}\frac{\partial \phi}{\partial t}(\boldsymbol{x},t)\biggr)^2
+|\boldsymbol{\nabla} \phi(\boldsymbol{x},t)|^2 \biggr]
\,\mathrm{d}V
\end{aligned}
\begin{aligned}
\frac{\mathrm{d} E}{\mathrm{d}t}(t)
&=\int_V
\biggl[ \frac{\partial \phi}{\partial t} \underbrace{\frac{1}{c^2}\frac{\partial^2 \phi}{\partial t^2}}_{\mathrlap{=\Delta\phi}}
+\boldsymbol{\nabla}\phi \cdot \boldsymbol{\nabla}\biggl(\frac{\partial \phi}{\partial t}\biggr) \biggr]
\,\mathrm{d}V\\
&=\int_{\partial V}
\frac{\partial \phi}{\partial t}\frac{\partial \phi}{\partial n}
\,\mathrm{d}S
\end{aligned}
となる.但し,グリーンの定理\frac{\mathrm{d} E}{\mathrm{d}t}(t)
&=\int_V
\biggl[ \frac{\partial \phi}{\partial t} \underbrace{\frac{1}{c^2}\frac{\partial^2 \phi}{\partial t^2}}_{\mathrlap{=\Delta\phi}}
+\boldsymbol{\nabla}\phi \cdot \boldsymbol{\nabla}\biggl(\frac{\partial \phi}{\partial t}\biggr) \biggr]
\,\mathrm{d}V\\
&=\int_{\partial V}
\frac{\partial \phi}{\partial t}\frac{\partial \phi}{\partial n}
\,\mathrm{d}S
\end{aligned}
\begin{aligned}
&\int_V u\Delta v \,\mathrm{d}V
=\int_V \underbrace{u[\boldsymbol{\nabla}\cdot(\boldsymbol{\nabla}v)]}
_{\mathrlap{=\boldsymbol{\nabla}\cdot [u (\boldsymbol{\nabla}v)]
- (\boldsymbol{\nabla}u)\cdot(\boldsymbol{\nabla}v)}}
\,\mathrm{d}V \\
&=\int_{\partial V} [u (\boldsymbol{\nabla}v)] \cdot\boldsymbol{n}\,\mathrm{d}S
-\int_V (\boldsymbol{\nabla}u)\cdot(\boldsymbol{\nabla}v) \,\mathrm{d}V \\
&=\int_{\partial V} u \frac{\partial v}{\partial n} \,\mathrm{d}S
-\int_V (\boldsymbol{\nabla}u)\cdot(\boldsymbol{\nabla}v) \,\mathrm{d}V \\
&\quad\Biggl(\frac{\partial v}{\partial n} =(\boldsymbol{\nabla}v) \cdot\boldsymbol{n} \Biggr)
\end{aligned}
を用いた.【参考】$u$と$v$を入れ替えた式を使えば,&\int_V u\Delta v \,\mathrm{d}V
=\int_V \underbrace{u[\boldsymbol{\nabla}\cdot(\boldsymbol{\nabla}v)]}
_{\mathrlap{=\boldsymbol{\nabla}\cdot [u (\boldsymbol{\nabla}v)]
- (\boldsymbol{\nabla}u)\cdot(\boldsymbol{\nabla}v)}}
\,\mathrm{d}V \\
&=\int_{\partial V} [u (\boldsymbol{\nabla}v)] \cdot\boldsymbol{n}\,\mathrm{d}S
-\int_V (\boldsymbol{\nabla}u)\cdot(\boldsymbol{\nabla}v) \,\mathrm{d}V \\
&=\int_{\partial V} u \frac{\partial v}{\partial n} \,\mathrm{d}S
-\int_V (\boldsymbol{\nabla}u)\cdot(\boldsymbol{\nabla}v) \,\mathrm{d}V \\
&\quad\Biggl(\frac{\partial v}{\partial n} =(\boldsymbol{\nabla}v) \cdot\boldsymbol{n} \Biggr)
\end{aligned}
\begin{aligned}
\int_V (u\Delta v - v\Delta u) \,\mathrm{d}V
&=\int_{\partial V} \biggl(u \frac{\partial v}{\partial n} - v \frac{\partial u}{\partial n} \biggr)\,\mathrm{d}S
\end{aligned}
であることもわかる.\int_V (u\Delta v - v\Delta u) \,\mathrm{d}V
&=\int_{\partial V} \biggl(u \frac{\partial v}{\partial n} - v \frac{\partial u}{\partial n} \biggr)\,\mathrm{d}S
\end{aligned}
電磁気学
\begin{aligned}
&\boldsymbol{E}
=-\frac{\partial \boldsymbol{A}}{\partial t}-\mathrm{grad\,}\phi \\
&\boldsymbol{B}
=\mathrm{rot\,} \boldsymbol{A} \\
&\biggl(\frac{1}{c^2}\frac{\partial^2}{\partial t^2} -\Delta \biggr)\boldsymbol{A}
=0\\
&\biggl(\frac{1}{c^2}\frac{\partial^2}{\partial t^2} -\Delta \biggr)\phi
=0\\
&\mathrm{div\,} \boldsymbol{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t} = 0
\end{aligned}
&\boldsymbol{E}
=-\frac{\partial \boldsymbol{A}}{\partial t}-\mathrm{grad\,}\phi \\
&\boldsymbol{B}
=\mathrm{rot\,} \boldsymbol{A} \\
&\biggl(\frac{1}{c^2}\frac{\partial^2}{\partial t^2} -\Delta \biggr)\boldsymbol{A}
=0\\
&\biggl(\frac{1}{c^2}\frac{\partial^2}{\partial t^2} -\Delta \biggr)\phi
=0\\
&\mathrm{div\,} \boldsymbol{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t} = 0
\end{aligned}
\begin{aligned}
&\frac{1}{2}
\biggl[
\biggl(\frac{1}{c}\frac{\partial \phi}{\partial t}(\boldsymbol{x},t)\biggr)^2
+|\boldsymbol{\nabla} \phi(\boldsymbol{x},t)|^2
\biggr] \\
&=
\end{aligned}
&\frac{1}{2}
\biggl[
\biggl(\frac{1}{c}\frac{\partial \phi}{\partial t}(\boldsymbol{x},t)\biggr)^2
+|\boldsymbol{\nabla} \phi(\boldsymbol{x},t)|^2
\biggr] \\
&=
\end{aligned}
音波
【関連記事】音波を考える場合,速度ポテンシャルは波動方程式を満たす:
\begin{aligned}
&\boldsymbol{u}(\boldsymbol{x},t)
=\mathrm{grad\,} \Phi(\boldsymbol{x},t) \\
&p(\boldsymbol{x},t)
=-\rho \frac{\partial\Phi}{\partial t}(\boldsymbol{x},t) \\
&\biggl(\frac{1}{c^2}\frac{\partial^2}{\partial t^2}-\Delta \biggr) \Phi =0
\end{aligned}
よって&\boldsymbol{u}(\boldsymbol{x},t)
=\mathrm{grad\,} \Phi(\boldsymbol{x},t) \\
&p(\boldsymbol{x},t)
=-\rho \frac{\partial\Phi}{\partial t}(\boldsymbol{x},t) \\
&\biggl(\frac{1}{c^2}\frac{\partial^2}{\partial t^2}-\Delta \biggr) \Phi =0
\end{aligned}
エネルギー保存則
\begin{aligned}
\frac{\mathrm{d} E}{\mathrm{d}t}(t)
+\int_{\partial V}
p\boldsymbol{u}\cdot \boldsymbol{n}
\,\mathrm{d}S
=0
\end{aligned}
\frac{\mathrm{d} E}{\mathrm{d}t}(t)
+\int_{\partial V}
p\boldsymbol{u}\cdot \boldsymbol{n}
\,\mathrm{d}S
=0
\end{aligned}
\begin{aligned}
&E(t)=\int_V (K+U)\,\mathrm{d}V \\
&
\begin{cases}
\,\displaystyle
K= \frac{1}{2} \rho | \boldsymbol{\nabla} \Phi |^2
&\text{:運動エネルギー密度}\\
\,\displaystyle
U=\frac{1}{2} \frac{\rho}{c^2} \biggl(\frac{\partial \Phi}{\partial t}\biggr)^2
&\text{:ポテンシャルエネルギー密度}
\end{cases}
\end{aligned}
&E(t)=\int_V (K+U)\,\mathrm{d}V \\
&
\begin{cases}
\,\displaystyle
K= \frac{1}{2} \rho | \boldsymbol{\nabla} \Phi |^2
&\text{:運動エネルギー密度}\\
\,\displaystyle
U=\frac{1}{2} \frac{\rho}{c^2} \biggl(\frac{\partial \Phi}{\partial t}\biggr)^2
&\text{:ポテンシャルエネルギー密度}
\end{cases}
\end{aligned}
量子力学
参考文献 / 記事
【波動方程式】[1]現代数学への入門 熱・波動と微分方程式
【電磁波】
[2]理論電磁気学:付録Aには,Greenの定理を始めとしてベクトル解析についての解説がある.
[3]場の古典論(原書第6版) (ランダウ=リフシッツ理論物理学教程)
【流体・音波】
[4]Hydrodynamics (Dover Books on Physics)
[5]流体力学 (前編) (物理学選書 (14)) (物理学選書 14)