正規分布の畳み込み・相関関数

正規分布の畳み込み・相関関数を以下の方法で計算してみる.
フーリエ変換を使った相関関数と畳み込みの計算方法 - Notes_JP

準備

この記事では,関数$f$のフーリエ変換を
\begin{aligned}
\mathcal{F}[f](\xi)
= \int_{-\infty}^{\infty} f(x) e^{-i2\pi\xi x}\,\mathrm{d}x
\end{aligned}
とする.いくつかフーリエ変換の式を導いておく.

1) $f(x)=e^{-\alpha x^{2}}$の場合,指数部が

\begin{aligned}
-\alpha x^{2} -i2\pi\xi x
&= -\alpha \biggl(x + i\frac{\pi\xi}{\alpha} \biggr)^{2}
-\frac{\pi^{2}\xi^{2}}{\alpha}
\end{aligned}
となるので,
\begin{aligned}
\mathcal{F}[f](\xi)
= \sqrt{\frac{\pi}{\alpha}} e^{-\pi^{2}\xi^{2/}\alpha}
\end{aligned}
である.詳しくは次の記事を参照➡ガウス積分と派生公式 - Notes_JP


2) $f(x) = g(x-\beta)$の場合は

\begin{aligned}
\mathcal{F}[f](\xi)
&= \int_{-\infty}^{\infty} g(x-\beta) e^{-i2\pi\xi (x-\beta)}\,\mathrm{d}(x-\beta)
\times e^{-i2\pi\xi \beta} \\
&= e^{-i2\pi\xi \beta} \mathcal{F}[g](\xi)
\end{aligned}

3) 1),2)より$f(x)=e^{-\alpha (x-\beta)^{2}}$の場合,

\begin{aligned}
\mathcal{F}[f](\xi)
= \sqrt{\frac{\pi}{\alpha}} e^{-\pi^{2}\xi^{2/}\alpha} e^{-i2\pi\xi \beta}
\end{aligned}

畳み込み

$f_{i}(x)=e^{-\alpha_{i} (x-\mu_{i})^{2}}$のとき,畳み込み
\begin{aligned}
(f_{1}*f_{2})(y)
=\int_{-\infty}^{\infty} f_{1}(x) f_{2}(y - x)\,\mathrm{d}x
\end{aligned}
を求める.

$1/\alpha = 1/\alpha_{1} + 1/\alpha_{2}=(\alpha_{1}+\alpha_{2})/\alpha_{1}\alpha_{2}$,$\mu=\mu_{1}+\mu_{2}$とすると,

\begin{aligned}
(f_{1}*f_{2})(y)
&= \mathcal{F}^{-1}\biggl[\mathcal{F}[f_{1}]\cdot \mathcal{F}[f_{2}]\biggr](y) \\
&=\mathcal{F}^{-1} \biggl[
\sqrt{\frac{\pi}{\alpha_{1}}} e^{-\pi^{2}\xi^{2}/\alpha_{1}}
e^{-i2\pi\xi \mu_{1}}
\cdot
\sqrt{\frac{\pi}{\alpha_{2}}} e^{-\pi^{2}\xi^{2}/\alpha_{2}}
e^{-i2\pi\xi \mu_{2}} \biggr](y)\\
&= \frac{\pi}{\sqrt{\alpha_{1}\alpha_{2}}}
\mathcal{F}^{-1} \biggl[e^{-i2\pi\xi \mu} e^{-\pi^{2}\xi^{2}/\alpha} \biggr](y)\\
&= \frac{\pi}{\sqrt{\alpha_{1}\alpha_{2}}}
\sqrt{ \frac{\alpha}{\pi}}
e^{-\alpha(y - \mu)^{2}} \\
&=\sqrt{\frac{\pi}{\alpha_{1}+\alpha_{2}}} e^{-\alpha(y - \mu)^{2}}
\end{aligned}
となる.


特に,$f_{i}$が正規分布(➡正規分布の覚え方 - Notes_JP

\begin{aligned}
f_{i}(x)
=\frac{1}{\sqrt{2\pi}\sigma_{i}} e^{-(x-\mu_{i})^{2}/2\sigma_{i}^2}
\end{aligned}
のとき,$\alpha_{i} = 1/2\sigma_{i}^2$とすると$1/\alpha=2(\sigma_{1}^{2} + \sigma_{2}^{2})$だから,
\begin{aligned}
(f_{1}*f_{2})(y)
&= \frac{1}{2\pi\sigma_{1}\sigma_{2}}
\sqrt{\frac{2\pi}{1/\sigma_{1}^{2}+1/\sigma_{2}^{2}}}
e^{-(y-(\mu_{1}+\mu_{2}))^{2}/2(\sigma_{1}^{2} + \sigma_{2}^{2})} \\
&= \frac{1}{\sqrt{2\pi(\sigma_{1}^{2}+\sigma_{2}^{2}})}
e^{-(y-(\mu_{1}+\mu_{2}))^{2}/2(\sigma_{1}^{2} + \sigma_{2}^{2})}
\end{aligned}
というよく知られた結果が得られる($X_{i}\sim N(\mu_{i}, \sigma_{i}^{2}) \Rightarrow X_{1}+X_{2} \sim N(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2})$).

相関関数

$f_{i}(x)=e^{-\alpha_{i} (x-\mu_{i})^{2}}$のとき,相関関数
\begin{aligned}
(f_{1} \star f_{2})(y)
=\int_{-\infty}^{\infty} \bar{f}_{1}(x) f_{2}(x+y)\,\mathrm{d}x
\end{aligned}
を求める.

$1/\alpha = 1/\alpha_{1} + 1/\alpha_{2}=(\alpha_{1}+\alpha_{2})/\alpha_{1}\alpha_{2}$,$\tilde{\mu}=\mu_{2} - \mu_{1}$とすると,

\begin{aligned}
(f_{1}*f_{2})(y)
&= \mathcal{F}^{-1}\biggl[\overline{\mathcal{F}[f_{1}]} \cdot \mathcal{F}[f_{2}]\biggr](y) \\
&=\mathcal{F}^{-1} \biggl[
\sqrt{\frac{\pi}{\alpha_{1}}} e^{-\pi^{2}\xi^{2}/\alpha_{1}}
e^{\textcolor{red}{+}i2\pi\xi \mu_{1}}
\cdot
\sqrt{\frac{\pi}{\alpha_{2}}} e^{-\pi^{2}\xi^{2}/\alpha_{2}}
e^{-i2\pi\xi \mu_{2}} \biggr](y)\\
&= \frac{\pi}{\sqrt{\alpha_{1}\alpha_{2}}}
\mathcal{F}^{-1} \biggl[e^{-i2\pi\xi \tilde{\mu}} e^{-\pi^{2}\xi^{2}/\alpha} \biggr](y)\\
&= \frac{\pi}{\sqrt{\alpha_{1}\alpha_{2}}}
\sqrt{ \frac{\alpha}{\pi}}
e^{-\alpha(y - \tilde{\mu})^{2}} \\
&=\sqrt{\frac{\pi}{\alpha_{1}+\alpha_{2}}} e^{-\alpha(y - \tilde{\mu})^{2}}
\end{aligned}
となる.

確率変数で言えば,

\begin{aligned}
X_{i}\sim N(\mu_{i}, \sigma_{i}^{2})
\Rightarrow X_{2} - X_{1} \sim N(\mu_{2} - \mu_{1}, \sigma_{1}^{2}+\sigma_{2}^{2})
\end{aligned}
を意味する.

別解

特性関数を使う

確率変数$\{X_{i}\}_{i=1}^n$が互いに独立で正規分布$X_{i}\sim N(\mu_{i}, \sigma_{i}^{2}) $に従うとする.

$X_{i}$の特性関数は$\mathrm{E}[e^{itX_{i}}] = \exp(it\mu_{i} - \sigma_{i}^{2}t^{2}/2)$であるから,確率変数

\begin{aligned}
Z = \sum_{i=1}^{n} a_{i} X_{i}
\end{aligned}
の特性関数は
\begin{aligned}
\mathrm{E}[e^{itZ}]
&= \prod_{i=1}^{n} \mathrm{E}[e^{itX_{i}}] \\
&= \exp\biggl(it\sum_{i=1}^{n} a_{i}\mu_{i} - \sum_{i=1}^{n}a_{i}^{2} \sigma_{i}^{2}t^{2}/2 \biggr)
\end{aligned}
となる.

したがって,

\begin{aligned}
Z \sim N\biggl(\sum_{i=1}^{n} a_{i}\mu_{i}, \sum_{i=1}^{n}a_{i}^{2} \sigma_{i}^{2} \biggr)
\end{aligned}
である.

畳み込み

wikiの方法(➡Sum of normally distributed random variables - Wikipedia)を見つける前にやった計算のメモ.途中で平方完成している分,余計な手間がかかっている.

まず

\begin{aligned}
(f_{1}*f_{2})(y)
=\int_{-\infty}^{\infty} f_{1}(x+\mu_{1}) f_{2}(y - (x+\mu_{1}))\,\mathrm{d}x
\end{aligned}
であるから,$f_{1}(x)=e^{-\alpha_{1} x^{2}}$,$f_{2}(x)=e^{-\alpha_{2} (x-(\mu_{1}+\mu_{2}))^{2}}$としてよい.

上の結果から,

\begin{aligned}
& \mathcal{F}[f_{1}](\xi)\cdot \mathcal{F}[f_{2}](\xi) \\
&= \sqrt{\frac{\pi}{\alpha_{1}}} e^{-\pi^{2}\xi^{2}/\alpha_{1}}
\cdot
\sqrt{\frac{\pi}{\alpha_{2}}} e^{-\pi^{2}\xi^{2}/\alpha_{2}}
e^{-i2\pi\xi (\mu_{1}+\mu_{2})}
\end{aligned}
である.この指数部は,$1/\alpha = 1/\alpha_{1} + 1/\alpha_{2}=(\alpha_{1}+\alpha_{2})/\alpha_{1}\alpha_{2}$,$\mu=\mu_{1}+\mu_{2}$とすると
\begin{aligned}
-\frac{\pi^{2}}{\alpha} \xi^{2} - i2\pi\xi \mu
&= -\frac{\pi^{2}}{\alpha}\biggl(\xi + i\frac{\alpha \mu}{\pi}\biggr)^{2}
-\alpha \mu^{2}
\end{aligned}
となる.

よって,

\begin{aligned}
(f_{1}*f_{2})(y)
&= \mathcal{F}^{-1}\biggl[\mathcal{F}[f_{1}]\cdot \mathcal{F}[f_{2}]\biggr](y) \\
&= \frac{\pi}{\sqrt{\alpha_{1}\alpha_{2}}} e^{-\alpha \mu^{2}}
\cdot
\mathcal{F}^{-1}
\Biggl\{\exp
\biggl[-\frac{\pi^{2}}{\alpha}\biggl(\xi + i\frac{\alpha \mu}{\pi}\biggr)^{2}
\biggr]\Biggr\}(y) \\
&= \frac{\pi}{\sqrt{\alpha_{1}\alpha_{2}}}
e^{-\alpha \mu^{2}}
\cdot
e^{-i2\pi y \cdot i\alpha\mu/\pi}
\mathcal{F}^{-1}
\biggl[e^{-\pi^{2}\xi^{2}/\alpha}\biggr](y) \\
&= \frac{\pi}{\sqrt{\alpha_{1}\alpha_{2}}}
e^{-\alpha \mu^{2}}
\cdot
e^{2 y \alpha\mu}
\sqrt{\frac{\alpha}{\pi}}
e^{-\alpha y^{2}} \\
&=\sqrt{\frac{\pi}{\alpha_{1}+\alpha_{2}}} e^{-\alpha (y-\mu)^{2}}
\end{aligned}
となる.ただし,逆フーリエ変換は,上記のフーリエ変換の結果を(逆に)用いた.