2015-10-01から1ヶ月間の記事一覧
POINT 微積分の順序交換に関する定理の紹介. 応用例としてGauss積分について解説する. 微積分の順序交換に関する定理と,応用例を紹介します. 極限記号$\lim$と,積分$\displaystyle\int$の順序交換(優収束定理)については,次の記事を参照して下さい:…
POINT 「Riemann可積分であり,Lebesgue可積分でない」有名な例の紹介. 関数$\dfrac{\sin x}{x}$は,広義Riemann積分可能でも,Lebesgue積分は不可能な有名な例として知られています.じゃあ,「Lebesgue積分はRiemann積分よりも計算できる関数が少ないのか…
POINT チェビシェフの不等式(Chebyshev’s inequality)の導出と応用例の紹介. チェビシェフの不等式から,標準偏差がバラツキの尺度となることがわかる. チェビシェフの不等式から,「標準偏差がバラツキの尺度として用いられる」理由がわかります. 【覚…
POINT 積分公式の一覧(途中計算あり). 対象:三角関数・双曲線関数・指数関数・対数関数. 基本的な不定積分公式を導出します.以下では$a>0$とし,積分定数は省略します. 他の積分公式はこちら: ガウス積分と派生公式 - Notes_JP 指数関数 三角関数 双…
POINT 対角化の操作は,基底の変換(座標変換)に相当する. 行列の対角化の公式を「行列表示」の考え方で簡単に導く. 対角行列 定義 性質 対角化 対角化とは? なぜ必要? $P^{-1}AP$の意味は? 行列表示によるアプローチ 対角行列であるための条件 対角行…
POINT 行列表示とは,ベクトル空間の基底を単位ベクトルとみなすこと. 複素数の行列表現・四元数の行列表現・Pauli行列を簡単に導出できることを確かめる. 線形代数や量子力学では「線形写像/演算子を行列表示しなさい」という問題に出会います.この記事…
POINT ドル・コスト平均法のリターンを計算する. ドル・コスト平均法では,取得単価が平均化されることがわかる. ドル・コスト平均法は,毎回一定数買い付ける方法よりもハイリターンであることが示される. 最近,積立投資 (確定拠出年金や積立NISA) にお…
POINT モンティ・ホール問題は,誤答しやすいことで知られる確率問題. モンティ・ホール問題を簡単に解く方法を紹介する. 条件付き確率なしでモンティ・ホール問題を理解する方法を紹介します.問題を知っている人向けに結論から.次の考察だけで済みます…