POINT パワースペクトルの定義と意味,自己相関関数との関係について. 応用例として熱雑音を取り上げる. 【関連記事】 相関関数と畳み込み - Notes_JP 時間平均 - Notes_JP パワースペクトル 熱雑音 参考文献 パワースペクトル$x(t)$を$[-T/2, T/2]$でだけ…
【関連記事】 主成分回帰(PCR)・部分最小二乗法(PLS) - Notes_JP 主成分分析(PCA)とは あらすじ 考え方(分散の最大化) 考え方(対角化) 元データの分解 データ行列を使った表現 特異値分解との関係 参考文献 主成分分析(PCA)とはあらすじ1回の測…
POINT 関数の時間平均について. 時間的に周期性を持つ関数の長時間平均はゼロになる. 【関連記事】 電場の複素表示 - Notes_JP 時間平均 周期関数 実効値 複素数表示した波の時間平均 単色波の場合 一般の場合 複素場(解析信号)の構成 関係式の証明 時間…
POINT 「場の理論」の直感的な説明を試みた書籍. 場の理論を勉強する前に読んでおきたい本です! 以下(3冊)の書籍のメモです(【注】自分がわかりやすいように解釈し直しているので,誤りを含む可能性があります).著者の場の理論に対する説明は一貫して…
POINT PCAとPLSの導出に関する計算メモ. 【関連記事】 主成分分析(PCA) - Notes_JP 次の書籍の計算メモです.スモールデータ解析と機械学習作者:藤原 幸一オーム社Amazon 用語 PCR - 主成分回帰 PLS - 部分最小二乗法 PLS1 - 目的変数が1つの場合 Python…
$x^{3} = 1$の解は$x = \omega, \omega^{2}, \omega^{3}( = 1)$と表せる(下図).但し,$\omega$の選び方には図a), b)の2通りがある.さらに,図で3つのベクトルの和を考えれば,図a), b)のどちらでも\begin{aligned} \omega^{2} + \omega + 1 = 0 \end{ali…
複素数を使う:ド・モアブルの定理 加法定理を使う 回転行列を使う 複素数を使う:ド・モアブルの定理ド・モアブルの定理 - Wikipediaを使う.$e^{i3\theta} = (e^{i\theta})^{3}$だから\begin{aligned} e^{i3\theta} & = \cos 3\theta + i \sin 3\theta \\ …
POINT 相関関数と畳み込みの比較. フーリエ変換を使って計算する方法 【関連記事】 フーリエ変換の公式と導出 - Notes_JP 定義と意味 フーリエ変換を使った計算方法 離散版 参考記事 定義と意味ここでは積分変数$t$を時間とみなす.相互相関関数も畳み込み…
POINT 粘性流体の応力テンソル,弾性体の応力テンソルについて. 連続物体の運動方程式には「応力テンソル」が現れます(関連記事 [A]).粘性流体と弾性体の場合に,応力テンソルの表式を整理します.【関連記事】 [A] 流体力学の方程式(運動方程式・連続…
POINT 音速を熱力学の観点から見てみる. 音速を等温変化で表す. 【関連記事】 応力テンソル(流体・弾性体) - Notes_JP 音波の方程式 - Notes_JP ラメ定数 - Notes_JP 断熱圧縮率と等温圧縮率 音速と等温変化 参考文献 断熱圧縮率と等温圧縮率断熱圧縮率…
POINT ヘルムホルツの定理(ヘルムホルツ分解)に関するメモ 【関連記事】 ベクトル解析の公式 - Notes_JP ヘルムホルツの定理 性質 div A = 0を満たすものが存在すること 参考文献 ヘルムホルツの定理ベクトル場$\bm{v}$は,スカラーポテンシャル$\phi $と…