物理学

このカテゴリーの目次を作成しました: Physics記事の一覧

ベクトル解析を使いこなすために(記事一覧)

基本編 ラプラシアン編 座標変換編 テンソル編 基本的な計算 テンソルを使ってベクトル解析 テンソル小話 文献 基本編ベクトル解析の公式は,慣れるととその場ですぐに計算できるようになります.第$i$成分を計算する方法をマスターしましょう. 外積の計算…

行列の性質

POINT よく使う行列の性質をまとめます. 【関連記事】 ベクトル解析の公式 - Notes_JP 対称行列 逆行列 逆行列 クラメルの公式 例:2×2行列 式変形 重み 対称行列${}^t \!A = A$($a_{ji}=a_{ij}$)を満たす行列を「対称行列」と呼びます.逆行列対称行列の…

熱雑音とパワースペクトル

POINT パワースペクトルの定義と意味,自己相関関数との関係について. 応用例として熱雑音を取り上げる. 【関連記事】 相関関数と畳み込み - Notes_JP 時間平均 - Notes_JP パワースペクトル 熱雑音 参考文献 パワースペクトル$x(t)$を$[-T/2, T/2]$でだけ…

時間平均

POINT 関数の時間平均について. 時間的に周期性を持つ関数の長時間平均はゼロになる. 【関連記事】 電場の複素表示 - Notes_JP 時間平均 周期関数 実効値 複素数表示した波の時間平均 単色波の場合 一般の場合 複素場(解析信号)の構成 関係式の証明 時間…

【読書メモ】素粒子論はなぜわかりにくいのか(吉田伸夫)

POINT 「場の理論」の直感的な説明を試みた書籍. 場の理論を勉強する前に読んでおきたい本です! 以下(3冊)の書籍のメモです(【注】自分がわかりやすいように解釈し直しているので,誤りを含む可能性があります).著者の場の理論に対する説明は一貫して…

ミラー反射に伴う偏光の計算

POINT ミラーの反射による偏光の変化をジョーンズベクトル・行列で計算する方法のメモ. 座標系の取り方は参考文献[1]に従う. 2つのミラー 図示による方法 ジョーンズベクトルとジョーンズ行列を使う方法 補足:ミラー間の座標回転角度の求め方 参考文献 2…

相関関数と畳み込み

POINT 相関関数と畳み込みの比較. フーリエ変換を使って計算する方法 【関連記事】 定義と意味 フーリエ変換を使った計算方法 離散版 参考記事 定義と意味ここでは積分変数$t$を時間とみなす.相互相関関数も畳み込み積分も,「①2つの関数$f, g$のうち一方…

応力テンソル(流体・弾性体)

POINT 粘性流体の応力テンソル,弾性体の応力テンソルについて. 連続物体の運動方程式には「応力テンソル」が現れます(関連記事 [A]).粘性流体と弾性体の場合に,応力テンソルの表式を整理します.【関連記事】 [A] 流体力学の方程式(運動方程式・連続…

音速と熱力学

POINT 音速を熱力学の観点から見てみる. 音速を等温変化で表す. 【関連記事】 応力テンソル(流体・弾性体) - Notes_JP 音波の方程式 - Notes_JP ラメ定数 - Notes_JP 断熱圧縮率と等温圧縮率 音速と等温変化 参考文献 断熱圧縮率と等温圧縮率断熱圧縮率…

ヘルムホルツの定理(ヘルムホルツ分解)

POINT ヘルムホルツの定理(ヘルムホルツ分解)に関するメモ 【関連記事】 ベクトル解析の公式 - Notes_JP ヘルムホルツの定理 性質 div A = 0を満たすものが存在すること 参考文献 ヘルムホルツの定理ベクトル場$\bm{v}$は,スカラーポテンシャル$\phi $と…

実関数のフーリエ変換

POINT 「実関数のフーリエ変換」の性質について. 現実のデータをフーリエ変換で解析する場合,実数値関数のフーリエ変換となる場合が多い.その性質を知っておくと解析で役に立つ場合がある.【関連記事】 連続フーリエ変換 一般論 偶関数の場合 奇関数の場…

デルタ関数と公式

POINT 超関数である,ディラックのデルタ関数の公式とその導出. 【関連記事】 曲線座標系のデルタ関数 - Notes_JP フーリエ変換の公式と導出 - Notes_JP 定義 公式 その他の計算例 参考文献 定義デルタ関数関数$\varphi$に対し\begin{aligned} \int_{-\inft…

savgol_coeffs(scipy)のメモ(Savitzky-Golay)

POINT Savitzky-Golayの係数を計算するsavgol_coeffsの内容に関するメモ. scipy.signal.savgol_coeffs — SciPy v1.12.0 Manualの計算メモ.思ったよりも単純ではなかった.Referencesの"Ying, and Jing Bai. 2005. Savitzky-Golay smoothing and differenti…

e^{ikr}/rに関する計算

直接の微分計算など,フツーはやらないことのメモ. 気になったとき(そんなことある?)に確認するためのもの. 直接計算でいかにラクをするかを考えるのはちょっと楽しい.【関連記事】 球面波 - Notes_JP ヘルムホルツ方程式 - Notes_JP 1階微分 2階微分 …

速度の変換則(ローレンツ変換)

POINT ローレンツ変換をもとに速度の変換則を導く. 粒子運動を異なる慣性系で観測すると,粒子の運動「方向」が異なって見える. 光を異なる慣性系で観測すると,光線の角度がずれて見える(光行差). 【関連記事】 [A]等長変換:回転・反転・Lorentz変換 …

昇降演算子:生成消滅演算子と角運動量演算子

POINT 生成・消滅演算子と角運動量演算子の議論を比較する. どちらも「昇降演算子」がカギ. 昇降演算子が現れる問題を比較してみます.生成・消滅演算子と角運動量演算子で,同じように議論を行います. 【関連記事】 [A]角運動量演算子についての記事を作…

Lambのストークス近似の解(定常,非圧縮)

POINT ストークス近似の解を,Lamb Hydrodynamics(参考文献[1])の方法で導出する. 例えば,①球の周りの流れ,②球に働く力を計算できる(関連記事[A]). 関連記事[A]の問題の下準備にあたる記事です. Wikipediaでは "Lamb's general solution" と呼ばれ…

球に働く力(ストークスの抵抗の法則)

POINT 定常な一様流の中に球を固定したときに,球に働く力を計算する. $F = 6\pi\mu a U$($U$:流れの速さ,$\mu$:粘性係数,$a$:球の半径). 関連記事[A]で計算した速度と圧力をもとに,球に働く力を計算することができます. 【関連記事】 [A]球を過…

球を過ぎる流れ

POINT 定常な一様流の中に球を固定したときの流れと圧力を求める(非圧縮流体でReynolds数が小さい場合). この結果から,球に働く力(Stokesの抵抗の法則)を計算できる. 有名な問題です.調べてみると,文献によって導出方法がかなり異なることがわかり…

ラプラス方程式

POINT Laplace方程式$\Delta\varphi(\boldsymbol{r}) =0$の変数分離解. 【関連記事】 [A]シュレーディンガー方程式(中心力場) - Notes_JP [B]ヘルムホルツ方程式 - Notes_JP [C]体球調和関数と球面調和関数 - Notes_JP 変数分離 極座標での解 角度方程式 …

体球調和関数と球面調和関数

POINT 体球調和関数と球面調和関数について. 【関連記事】 ヘルムホルツ方程式 - Notes_JP シュレーディンガー方程式(中心力場) - Notes_JP ラプラス方程式 - Notes_JP 極座標のラプラシアン 体球調和関数と球面調和関数 3次元の場合 参考文献 極座標のラ…

ヘルムホルツ方程式

POINT Helmholtz方程式$ (\Delta + k^2) \varphi(\boldsymbol{r}) =0$の変数分離解. 【関連記事】 [A]シュレーディンガー方程式(中心力場) - Notes_JP [B]体球調和関数と球面調和関数 - Notes_JP [C]軸対称な波動方程式(ベクトルポテンシャル) - Notes_…

流体力学と無次元数

POINT 無次元化の具体例. 無次元化した方程式から「相似則」が導かれる. 無次元化の際,レイノルズ数などの無次元数が現れる. 【関連記事】 無次元化が必要な理由と方法〜数値計算の疑問 - Notes_JP Reynolds数 次元解析 方程式の無次元化 参考文献 Reyno…

ベクトルの射影と直交化

POINT 射影の基本的性質. ベクトルのとても基本的,かつ便利な考え方です.この記事で紹介するのは,慣れればどれも当たり前に感じられる性質です. この考え方は,フーリエ級数などでも役に立ちます. 射影 基底による展開 直交成分 グラム・シュミットの…

座標軸の回転と変換則

POINT 座標軸を回転させるとき,「基底は同じ方向に回転」し,「ベクトルは逆方向に回転」する. 基底の変換則,ベクトルの変換則を導く. 結果をまとめておきます($R(\theta)$は回転行列). 変換則(ベクトル表記) 変換則(成分表記) 基底 $\boldsymbol{e}_…

磁場が軸性ベクトルであること

POINT 磁場が軸性ベクトル(擬ベクトル)であることの説明方法. ベクトルには,空間反転で符号を変える「極性ベクトル」と符号を変えない「軸性ベクトル」がある. 右手系と左手系のどちらをとるかで磁場の向きは変わってしまうが,方程式は変わらない. 【…

ベクトルの外積と座標変換

POINT ベクトルの外積(ベクトル積,クロス積)の注意点について. 座標変換の表式を導く. ベクトルの外積について,こんな性質もあるんだよ!というものをまとめています.性質としては重要なものですが,「計算」ではあまり使わないため忘れてしまいがち…

応力テンソルとは

POINT なぜ,応力がテンソルで表されるのか. 応力を考えると自然にテンソルが必要になる. 「テンソル(tensor)」の語源は「張力(tension)」であると言われています.ここでは,応力を考えることで,自然にテンソルの概念が現れることを見てみます. 【…

ベクトル解析の公式(積分編)

POINT ベクトル解析の積分公式. 【関連記事】 ベクトル解析の公式 - Notes_JP ディアディック(ダイアド積)の計算 - Notes_JP ガウスの発散定理 スカラーの場合 テンソルへの拡張 参考文献 ガウスの発散定理一番スタンダードな形から導ける派生公式を紹介…

定常波・定在波の性質

POINT 定常波・定在波の性質について考察する. 自由端反射と固定端反射による定常波の特徴. 【関連記事】 [A]2層・垂直入射の反射と透過(電磁波・音波・量子力学) - Notes_JP:振幅反射率の具体的な表式を求めています. [B]【旧版】定常波・定在波の性…