物理学

このカテゴリーの目次を作成しました:

【メモ】スピンはめぐる(朝永振一郎)

POINT 読書メモ. ロジックや計算の行間を埋めていく予定. 第1話が結構辛かったのですが,第2話以降からどんどん楽しくなってきました.あまり計算で悩まず,全体像を追うことに集中すると,楽しく読むことができそうです.量子力学の教科書と合わせて本書…

曲線座標系のデルタ関数

POINT 曲線座標系におけるデルタ関数の表式. デルタ関数の座標変換 デカルト座標系 円筒座標系 極座標系 参考文献 デルタ関数の座標変換デルタ関数の座標変換 $\boldsymbol{\xi}=f(\boldsymbol{x})$(注:$f^{-1}(0)$が1点に定まるとする)に対し \begin{al…

鞍点法

POINT 鞍点法(鞍部点法,最急降下(線)法)の計算について. 解析関数と鞍点 鞍点法 例 参考記事/文献 解析関数と鞍点解析関数(正則関数)$f$の実部と虚部をそれぞれ$u$, $v$と表す($f=u+iv$)ときCauchy-Riemannの方程式 \begin{align} \frac{\partial …

合成関数の微分で混乱したときの対処法

POINT 合成関数を簡略化して書くと,計算の際混乱することがある. 混乱した場合は「簡略化の記法をやめて,定義に戻って考える」と良い. 以前から,これ混乱しない?と思っていたので記事にしました.そもそも「簡略化した記法」を使うことが多すぎて,「…

【高校物理】ドップラー効果(音波)

POINT ドップラー効果の問題を統一的に考える方法. 「振動数」=「単位時間あたりの波の数」がポイント. 観測者が単位時間に観測する「波の数」を調べれば良い. 高校物理の内容です.ドップラー効果が,全て同じ方法(単位時間に観測する「波の数」を数え…

【高校物理】波長・速度・振動数の関係

POINT 波動現象の波長・速度・振動数の関係を整理します. ドップラー効果を考える際にも役立ちます:【高校物理】ドップラー効果(音波) - Notes_JP 「振動数=単位時間にだす波の個数」,「速度=1単位時間に発せられた波が占める領域の長さ」. この記事…

Schrödinger方程式(時間変化する井戸型ポテンシャル)

POINT Schrödinger方程式. 井戸の幅が時間変化する問題. 昔やった計算のメモ.まだ途中.... 問題設定 無次元化 変数分離 固有エネルギーと固有関数 時間発展 位置の期待値 問題設定問題質量$m$の粒子が \begin{align} V(x) &= \begin{cases} \,0 & (0\…

球に関わる積分

POINT 球が積分領域など,何らかの形で関わる積分計算のメモ. 分類の仕方は暫定です.増えてきたらまた考えます. Helmholtz方程式関連 Helmholtz方程式関連LAMB, HYDRODYNAMICS, SIXTH EDITION, DOVER, Art. 290から.公式$S$を原点を中心とする半径$a$の…

定常波・定在波の性質

POINT 定常波・定在波の性質について考察する. 自由端反射と固定端反射による定常波の特徴. 意外とちゃんと考えたことがなかったので,丁寧に考察してみました.「共鳴」は書きかけ... 記法 定常波と定在波 定常波 定在波 反射波による定常波 自由端反…

時間平均

POINT 関数の時間平均について. 時間的に周期性を持つ関数の長時間平均はゼロになる. 時間平均 周期関数 実効値 時間平均時間平均時間を変数とする関数$f$の「時間平均」を \begin{align} \langle f\rangle =\frac{1}{T}\int_0^T f(t)\,\mathrm{d}t \end{a…

物質微分の意味と関係式(流体力学)

POINT 流体力学で現れる物質微分(ラグランジュ微分)の意味を解説. 物質微分は,流体の流れと一緒に移動する「流体粒子」からみた微分とみなせる. 物質微分の関係式をいくつか計算する. 流体力学で基礎的かつ重要な概念である「物質微分」のイメージはと…

クリストッフェル記号

POINT クリストッフェル記号の定義と性質について. 円筒座標系,極座標系の具体計算を行う. 定義 性質 円筒座標 極座標 参考文献/記事 定義\begin{align} \Gamma^{\alpha}_{\:\beta\gamma} &=g^{\alpha\mu} \Gamma_{\mu\beta\gamma} \\ \Gamma_{\alpha\bet…

流体力学の方程式(運動方程式・連続の方程式・状態方程式)

POINT 流体力学において流れを決定する方程式を整理します. 連続物体の運動量・質量・エネルギーの保存則は,それぞれ運動方程式・連続の方程式・状態方程式に対応します.流体力学では,これらの方程式から未知数を決定することになります. 記法 運動方程…

応力テンソルとは

POINT 応力がなぜテンソルで表されるのかを解説. 応力を考えると自然にテンソルが必要になる. 「張力(tension)」が「テンソル(tensor)」の語源であると言われています.実際に,応力を考えると自然にテンソルという概念が現れることを見てみましょう.…

シュレーディンガー方程式(中心力場)

POINT 中心力場のシュレーディンガー方程式を解く流れを解説します. ヘルムホルツ方程式も特殊な場合として含まれるので,波動現象(電磁波,音波など)の理解にも役立ちます. Schrödinger方程式 解法 ラプラシアン 角度変数 動径関数 ヘルムホルツ方程式…

フーリエ変換の公式と導出

POINT フーリエ変換の関係式とその導出. 畳み込みについては以下を参照してください: 定義 逆変換 性質 よく使う関係式 偶関数・奇関数の場合 計算例 指数関数 ガウス関数 デルタ関数 2πの付け方の違い 全体の定数倍 係数の定数倍 参考文献 定義関数$f$の…

Python(SciPy)で単振り子

POINT 単振り子の厳密解とPython(SciPy)の計算結果を比較する. 厳密解の導出を解説する. 数値計算の妥当性を確認するために,2通りの方法 常微分方程式をSciPy(odeint, ode, solve_ivp)を用いて解いたものをプロットする方法 厳密解を楕円積分・楕円関数を…

フックの法則/ひずみテンソルの座標変換(極座標・円筒座標)

POINT フックの法則(ひずみテンソル)の座標変換の計算方法. テンソル演算により座標変換の一般式を求めた後,極座標・円筒座標の具体式を計算する. 以下で与えられる,座標変換後の歪テンソルの表式の導出方法です. 歪テンソル(極座標) 歪テンソル(…

ディアディック(ダイアド積)の計算

POINT ディアディック(ダイアド積)の計算方法について解説. 「行列」として計算すればベクトル解析の計算に帰着させることができる. 流体力学などのベクトル解析の計算では,「ディアディック(ダイアド積)」と呼ばれる量が現れることがあります.いき…

ガウス積分と派生公式

POINT ガウス積分の計算をまとめました. ガウス積分とは,ガウス関数$e^{-x^2}$の積分のことです.ガウス関数は正規分布を始めとして様々な場面で現れることから,ガウス積分の計算に出くわす機会は頻繁にあります.派生する公式が多いことも特徴の一つです…

テンソルは関数として理解できる

POINT テンソルは「ベクトル(と転置ベクトル)」をいくつか与えると「値」を返す関数として理解できる. 例:行列$M$はテンソルである.なぜなら「ベクトル$\boldsymbol{v}$,$^{t}\boldsymbol{w}$」を与えると「値:${}^t\boldsymbol{w}M\boldsymbol{v}$」…

発散・ラプラシアンの計算法(極座標・円筒座標)

POINT 面倒な偏微分の計算(連鎖率・チェーンルール・合成関数の微分)無しでラプラシアンを計算する方法. 極座標・円筒座標の発散・ラプラシアンを数行で計算できる. 一般の曲線座標系への拡張はこちら. 一般論(曲線座標系)における複雑な議論を徹底的…

「テンソル記法」から「ベクトル解析の記法」への変換方法

POINT テンソル演算で得られた結果を,ベクトル解析の記法に書き換える方法. テンソル解析ではベクトルの変換則を$\displaystyle A^{\prime\mu}=\frac{\partial x^{\prime\mu}}{\partial x^\nu}A^\nu$で定めるが,この計算で得られる成分はベクトル解析で扱…

【実用例】面積・体積の計算法

POINT 面積・体積の計算を丁寧に解説. 同じ例を複数の方法で計算する方法を紹介. 公式として覚えているものも,同じプロセスで導かれることを見てみましょう.いつでも導出できるようになると便利です.とりあえずは球を中心に作成しました.他の例も,こ…

【高校物理】力学〜微積分を使おう

POINT 微積分を使えば公式を覚えずに済む. 質点の運動に関する公式は,運動方程式から自然に導かれる. 高校で学ぶ物理では,たくさんの公式や解法を覚えなくてはなりません.しかし,高校数学で習う「微積分」と結びつけるだけで,覚えなければならないこ…

無次元化が必要な理由と方法〜数値計算の疑問

POINT 無次元化が必要な理由とその方法について解説する. 数値計算の前は,無次元化をすることでパラメータのオーダー(桁数)を揃える事ができる. 数値計算などで,いきなり「無次元化」という概念が現れ, 必要性がわからない 具体的な手順がわからない …

テンソルと行列が混同される理由

POINT 「行列の成分」が「2階のテンソル(1階反変1階共変テンソル)の成分」になることが混乱の原因. この性質は「テンソルの商法則」の特別な場合に相当する. テンソルを関数と捉えて「行列がテンソルとなること」を示す方法もある. テンソルと行列の違…

テンソルの変換則とその導出

POINT 基底の変換則から,高階のテンソルの変換則が導かれる. 導出した変換則を一覧として整理した. 以前の記事で, 「線形空間$V$の基底・双対基底の変換則」から,自然に「反変・共変ベクトルの変換則」が導かれること を示しました.この議論を一般化す…

反変・共変ベクトルの変換則〜双対空間から理解する

POINT 双対空間は「相対論の共変ベクトル」や「量子力学のブラベクトル」として特に説明なく導入されている. 双対空間を学べば,共変ベクトルの変換則が自然に導かれる. ある線形空間 (ベクトル空間) に対し定義される「双対空間」は,物理の様々な場面で …

ラプラシアンの導出(極座標・円筒座標・曲線座標)

POINT 曲線座標のラプラシアン・発散を数行で計算する方法. 合成関数の微分(連鎖率・チェーンルール)なしで計算できる. より一般の曲線座標(曲がった空間)でも同じ方法が使える. 次の記事の内容を曲線座標系に一般化したものです.以下の記事を理解し…