2022-01-01から1年間の記事一覧

1の3乗根(図解)

$x^{3} = 1$の解は$x = \omega, \omega^{2}, \omega^{3}( = 1)$と表せる(下図).但し,$\omega$の選び方には図a), b)の2通りがある.さらに,図で3つのベクトルの和を考えれば,図a), b)のどちらでも\begin{aligned} \omega^{2} + \omega + 1 = 0 \end{ali…

3倍角の公式

複素数を使う:ド・モアブルの定理 加法定理を使う 回転行列を使う 複素数を使う:ド・モアブルの定理ド・モアブルの定理 - Wikipediaを使う.$e^{i3\theta} = (e^{i\theta})^{3}$だから\begin{aligned} e^{i3\theta} & = \cos 3\theta + i \sin 3\theta \\ …

相関関数と畳み込み

POINT 相関関数と畳み込みの比較. フーリエ変換を使って計算する方法 【関連記事】 定義と意味 フーリエ変換を使った計算方法 離散版 参考記事 定義と意味ここでは積分変数$t$を時間とみなす.相互相関関数も畳み込み積分も,「①2つの関数$f, g$のうち一方…

応力テンソル(流体・弾性体)

POINT 粘性流体の応力テンソル,弾性体の応力テンソルについて. 連続物体の運動方程式には「応力テンソル」が現れます(関連記事 [A]).粘性流体と弾性体の場合に,応力テンソルの表式を整理します.【関連記事】 [A] 流体力学の方程式(運動方程式・連続…

音速と熱力学

POINT 音速を熱力学の観点から見てみる. 音速を等温変化で表す. 【関連記事】 応力テンソル(流体・弾性体) - Notes_JP 音波の方程式 - Notes_JP ラメ定数 - Notes_JP 断熱圧縮率と等温圧縮率 音速と等温変化 参考文献 断熱圧縮率と等温圧縮率断熱圧縮率…

ヘルムホルツの定理(ヘルムホルツ分解)

POINT ヘルムホルツの定理(ヘルムホルツ分解)に関するメモ 【関連記事】 ベクトル解析の公式 - Notes_JP ヘルムホルツの定理 性質 div A = 0を満たすものが存在すること 参考文献 ヘルムホルツの定理ベクトル場$\bm{v}$は,スカラーポテンシャル$\phi $と…

Mark Kac - Statistical Independence in Probability, Analysis and Number Theory

計算メモ.とても楽しい本です. 以下の書籍で知りました.この数学書がおもしろい 増補新版数学書房Amazon 【目次】 第 1 章 ヴィエトから統計的独立性の概念へ 第 2 章 ボレルとその後 第 3 章 正規法則 第 4 章 素数は賽を振る 第 5 章 気体分子運動論か…

実関数のフーリエ変換

POINT 「実関数のフーリエ変換」の性質について. 現実のデータをフーリエ変換で解析する場合,実数値関数のフーリエ変換となる場合が多い.その性質を知っておくと解析で役に立つ場合がある.【関連記事】 連続フーリエ変換 一般論 偶関数の場合 奇関数の場…

正弦波のFFT (numpy.fft)

POINT sinのFFT (DFT) と DTFT,連続フーリエ変換の結果を比較する. numpy.fftの使い方を整理する. numpy.fftを正弦波で試したのでメモ. Discrete Fourier Transform (numpy.fft) — NumPy v1.26 Manual【関連記事】 フーリエ変換とDFTのつながり - Notes_…

フーリエ変換とDFTのつながり

POINT フーリエ変換〜DTFT〜DFTのつながりを整理する. サンプリングデータから,元の連続信号のスペクトルを得るにはどうすればよいか,という視点で考える. DFTと元の連続信号のフーリエ変換はどういう関係にあるのか? サンプリング信号は,どうしてイン…

2標本問題とプールされた分散

POINT プールされた分散が現れる背景について. 【関連記事】 【統計的仮説検定】手順と例を1ページにまとめる - Notes_JP 2標本問題 問題設定 それぞれの母分散が既知の場合 母分散が未知だが等しい場合 参考文献 2標本問題問題設定独立な確率変数\begin{al…

表でわかるベイズの定理(公式いらず)

POINT 問題を表にまとめると,ベイズの定理を覚えなくても条件付き確率を計算できる. 以前,【ベイズの定理】ベン図でわかる条件付き確率 - Notes_JPでベン図を使ってベイズの定理を理解する方法を解説しました.実は,ベイズの定理(あるいは条件付き確率…

確率分布

POINT 確率分布の期待値・分散 【関連記事】 事象が起こるまでの試行回数 - Notes_JP:幾何分布 ベルヌーイ分布 期待値 分散 二項分布 期待値 分散 幾何分布 期待値 分散 参考文献 ベルヌーイ分布母比率(信頼区間・検定) - Notes_JP \begin{aligned} \begi…

両側検定と片側検定

POINT 両側か片側かを決めるのは,主張したい「対立仮説$H_{1}$」である. 両側検定か,片側検定かはどうやって決まるのか?という話です.「母平均の検定」を例に,両側検定と片側検定を整理します.【関連記事】 【統計的仮説検定】手順と例を1ページにま…

分散分析

POINT 分散分析(Analysis of variance (ANOVA))についてのメモ. 都度更新.【関連記事】 1元配置 問題設定 平方和 自由度 分散分析表 効果の検定 2元配置 参考文献 1元配置問題設定要因$A$の水準$A_{1}, A_{2}, ..., A_{a}$について,それぞれ$r$個の観測…

線形回帰

POINT 線形単回帰,線形重回帰の概説. 性質を全て調べるのはなかなか大変です.【関連記事】 最小二乗法の計算(理論) - Notes_JP 分散分析 - Notes_JP 線形回帰 問題設定 標準的仮定 パラメータの推定方法 用語 単回帰 重回帰 最小2乗法 最尤法 回帰係数…

母比率(信頼区間・検定)

POINT 母集団に知りたい性質を持つものが「ある比率」で含まれるときに,無作為標本で比率を推定する方法. 母比率(知りたい真の値)を$p$とするとき,すべての標本が確率$p$で性質をもつと考えれば,「ベルヌーイ母集団からの無作為標本」と考えることがで…

正規分布の覚え方

POINT 正規分布の性質について. 忘れたときに,順に導く方法. 忘れたときに,どのような順序で考えればよいかを整理します. 【関連記事】 [A] ガウス積分と派生公式 - Notes_JP:ガウス積分に慣れていない場合はこの記事を参考にしてください. 正規分布…