数学-解析学

このカテゴリーの目次を作成しました:

三角関数の合成と一般化

POINT 複数の三角関数の和を計算する. 物理的には,単振動を複数合成することを意味する. オイラーの公式を用いて導出することもできる. 三角関数の合成 複数の三角関数 複素指数関数を使う方法 参考文献 三角関数の合成まずは,$\sin$と$\cos$の合成公式…

フーリエ変換の公式と導出

POINT フーリエ変換の関係式とその導出. 気が向いたら(他の関係式も)追記していきます.理論編はまた別記事で書きたいと思っています. 定義 逆変換 性質 よく使う関係式 偶関数・奇関数の場合 計算例 指数関数 ガウス関数 デルタ関数 2πの付け方の違い …

ガウス積分と派生公式

POINT ガウス積分の計算をまとめました. ガウス積分とは,ガウス関数$e^{-x^2}$の積分のことです.ガウス関数は正規分布を始めとして様々な場面で現れることから,ガウス積分の計算に出くわす機会は頻繁にあります.派生する公式が多いことも特徴の一つです…

三角関数と公式

POINT 三角関数の公式のほとんどは,単位円やグラフを描けば導ける. 例外的に「加法定理(3つ)」だけは暗記が必要.他の公式は加法定理から簡単に計算できる. 三角関数はあらゆる分野で現れます.ベクトルなどと同様に,ツールとしての役割が大きいです.…

【実用例】面積・体積の計算法

POINT 面積・体積の計算を丁寧に解説. 同じ例を複数の方法で計算する方法を紹介. 公式として覚えているものも,同じプロセスで導かれることを見てみましょう.いつでも導出できるようになると便利です.とりあえずは球を中心に作成しました.他の例も,こ…

極限操作(微分・積分・lim)の交換:定理と反例

POINT 極限操作(lim,微分,積分)を入れ替えられない例の紹介. 一様収束や微分,積分をグラフで理解しておけば簡単に反例をつくることができる. 絵(グラフ)で考えることが重要です.以下のような"当たり前"のポイントさえ掴んでいれば,反例を考えることは…

【例】収束因子

POINT 数学的に収束因子が正当化される例の紹介. 物理においては,実験との比較によって正当化される. 物理では,広義積分の計算において収束因子を掛けて収束性を良くし,最後に収束因子の影響を除く操作を行うことがあります.この操作が正当化されるの…

曲面積の求め方

POINT 定義さえ理解すれば,派生公式なしで計算が可能. 具体例として,回転体の表面積などの派生公式を導く. この記事を読めば,曲面積の定義式さえ理解しておけば,派生公式を覚える必要はないことがわかります!具体例を交えながら見ていきましょう. 曲…

【パラドックス】「1=−1」と複素数の平方根

POINT 複素数の平方根で有名な1=−1となるパラドックスを紹介. 実数の平方根と異なり,符号を一意に決められないことが原因. 高校生や大学の複素解析を学んだとき,「平方根」で混乱したことはないでしょうか?一見正しそうな計算により,1=−1 が導かれる…

ランダウの記号の使い方

POINT ランダウの記号は,無限小や無限大を議論する際に現れる. 微小量の高次項を表す際,$o(\cdot)$や$O(\cdot)$といった記号が現れます(カリグラフィー$\mathcal{O}$が使われることもあります).例えば,微積分学の教科書の中には,証明の中でこの記号…

【Lebesgue積分】優収束定理(limと積分の順序交換)

POINT 優収束定理(limと積分の順序交換)と応用例の解説. 優収束定理とその適用例を紹介します.微分・積分の順序交換については,以下の記事を参照して下さい: 優収束定理 例 参考文献 優収束定理 優収束定理 (Dominated convergence theorem) $(X,\math…

【Lebesgue積分】微積分の順序交換

POINT 微積分の順序交換に関する定理の紹介. 応用例としてGauss積分について解説する. 微積分の順序交換に関する定理と,応用例を紹介します. 極限記号$\lim$と,積分$\displaystyle\int$の順序交換(優収束定理)については,次の記事を参照して下さい:…

【反例】Riemann積分可能でも,Lebesgue積分は不可能な例:sinx/x

POINT 「Riemann可積分であり,Lebesgue可積分でない」有名な例の紹介. 関数$\dfrac{\sin x}{x}$は,広義Riemann積分可能でも,Lebesgue積分は不可能な有名な例として知られています.じゃあ,「Lebesgue積分はRiemann積分よりも計算できる関数が少ないのか…

積分公式(三角関数・双曲線関数・指数関数・対数関数)の一覧と導出

POINT 積分公式の一覧(途中計算あり). 対象:三角関数・双曲線関数・指数関数・対数関数. 基本的な不定積分公式を導出します.以下では$a>0$とし,積分定数は省略します. 他の積分公式はこちら: ガウス積分と派生公式 - Notes_JP 指数関数 三角関数 双…

ベッセル関数の関係式

POINT ベッセル関数の関係式. 積分表示 平面波 参考文献 積分表示積分表示 Besselの積分表示: $J_n(x)$$\displaystyle =\frac{1}{2\pi}\int_{0}^{2\pi} \cos\bigl(x\sin\theta-n\theta\bigr)\,\mathrm{d}\theta$ Hansenの積分表示: $J_n(x)$$\displaystyl…

三角関数の公式を指数関数で導く方法

POINT 三角関数の公式は指数関数を使って導くことができる. オイラーの公式 和積公式 三角関数の合成 オイラーの公式指数関数を使って三角関数の公式を導くことができるのは,「オイラーの公式」が成立するためです. 三角関数と指数関数はオイラーの公式オ…