3層・垂直入射の反射と透過(電磁波・音波)

POINT

  • 散乱問題と同じように,「定常的な状態を扱う方法」と「波を追跡する方法」がある.
  • 前者では「定常的な解+境界条件」をもとに解き,後者は「すべての反射波・透過波(この際,境界条件を考慮)を合成する」ことで解く.

【関連記事】

【メモ】この記事の分量が多くなったため,他のパターン(斜め入射など)は,別記事で書く予定.

境界条件を課す方法

電磁波

$x$軸方向に直線的な偏りをもつ,角振動数$\omega_0$の平面波を$z$軸正方向に入射することを考える.

境界面に対して接線成分だけがゼロでない値を持つから,境界条件は$\boldsymbol{E}(\boldsymbol{x},t), \boldsymbol{H}(\boldsymbol{x},t)$の接線成分の連続性を考える必要がある.

3層の反射・透過(垂直入射)
3層の反射・透過(垂直入射)

各誘電体中での電場を

\begin{aligned}
&E_x(z,t)\\
&=
\begin{cases}
\, E_\mathrm{i} e^{i(k_1 z-\omega_0 t)} + E_\mathrm{r} e^{-i(k_1 z+\omega_0 t)} & (z<0) \\
\, \tilde{E}_\mathrm{i} e^{i(k_2 z-\omega_0 t)} + \tilde{E}_\mathrm{r} e^{-i(k_2 z+\omega_0 t)} & (0 < z < d) \\
\, E_\mathrm{t} e^{i(k_3 z-\omega_0 t)} & (d < z)
\end{cases}
\end{aligned}
とすれば,関連記事[A]で見たように$\displaystyle \boldsymbol{B}=\frac{\boldsymbol{k}}{\omega_0} \times \boldsymbol{E}_0 e^{i (\boldsymbol{k}\cdot\boldsymbol{x}-\omega_0 t)}$が成り立つことから
\begin{aligned}
&\boldsymbol{B}(\boldsymbol{x},t)
=B_y(z,t) \boldsymbol{e}_y, \\
&B_y(z,t) \\
&=
\begin{cases}
\, [E_\mathrm{i} e^{i(k_1 z-\omega_0 t)} - E_\mathrm{r} e^{-i(k_1 z+\omega_0 t)}]/v_1 & (z<0) \\
\, [\tilde{E}_\mathrm{i} e^{i(k_2 z-\omega_0 t)} - \tilde{E}_\mathrm{r} e^{-i(k_2 z+\omega_0 t)}]/v_2 & (0 < z < d) \\
\, [E_\mathrm{t} e^{i(k_3 z-\omega_0 t)}]/v_3 & (d < z)
\end{cases}
\end{aligned}
となる($v_i(\omega)=1/\sqrt{\varepsilon_i(\omega)\mu_i(\omega)}=\omega/k_i$,$v_i=v_i(\omega_0)$).

ここで,関連記事[A]で解説したように,分散性を持つ一様な誘電体中では(強誘電体や強磁性体を除き)$\boldsymbol{H}(\boldsymbol{x},t)=\boldsymbol{B}(\boldsymbol{x},t)/\mu(\omega_0)$となる.よって,

\begin{aligned}
&\boldsymbol{H}(\boldsymbol{x},t)
=H_y(z,t) \boldsymbol{e}_y, \\
&H_y(z,t) \\
&=
\begin{cases}
\, [E_\mathrm{i} e^{i(k_1 z-\omega_0 t)} - E_\mathrm{r} e^{-i(k_1 z+\omega_0 t)}]N_1 & (z<0) \\
\, [\tilde{E}_\mathrm{i} e^{i(k_2 z-\omega_0 t)} - \tilde{E}_\mathrm{r} e^{-i(k_2 z+\omega_0 t)}]N_2 & (0 < z < d) \\
\, [E_\mathrm{t} e^{i(k_3 z-\omega_0 t)}]N_3 & (d < z)
\end{cases}
\end{aligned}
である($\mu_i=\mu_i(\omega_0)$,$\varepsilon_i=\varepsilon_i(\omega_0)$,$N_i=\sqrt{\varepsilon_i/\mu_i}=1/(v_i \mu_i)$).

境界面における$\boldsymbol{E}(\boldsymbol{x},t), \boldsymbol{H}(\boldsymbol{x},t)$の接線成分の連続性から,

\begin{aligned}
&\underline{z=0:}\\
&\quad\text{(B1)}
\begin{cases}
\, E_\mathrm{i} + E_\mathrm{r} = \tilde{E}_\mathrm{i} + \tilde{E}_\mathrm{r} \\
\, N_1(E_\mathrm{i} - E_\mathrm{r}) = N_2(\tilde{E}_\mathrm{i} - \tilde{E}_\mathrm{r})
\end{cases}\\
&\underline{z=d:}\\
&\quad\text{(B2)}
\begin{cases}
\, \tilde{E}_\mathrm{i} e^{ik_2 d} + \tilde{E}_\mathrm{r} e^{-ik_2 d} = E_\mathrm{t} e^{i k_3 d} \\
\, N_2(\tilde{E}_\mathrm{i} e^{ik_2 d} - \tilde{E}_\mathrm{r} e^{-ik_2 d}) = N_3 E_\mathrm{t} e^{i k_3 d}
\end{cases}
\end{aligned}
となる.

\begin{aligned}
\text{(B1)}
&\Leftrightarrow
\begin{cases}
\, \displaystyle
E_\mathrm{i}
= \frac{1}{2}\biggl[\biggl(1+\frac{N_2}{N_1} \biggr)\tilde{E}_\mathrm{i}
+ \biggl(1-\frac{N_2}{N_1} \biggr)\tilde{E}_\mathrm{r} \biggr] \\[8pt]
\, \displaystyle
E_\mathrm{r}
= \frac{1}{2}\biggl[\biggl(1-\frac{N_2}{N_1} \biggr)\tilde{E}_\mathrm{i}
+ \biggl(1+\frac{N_2}{N_1} \biggr)\tilde{E}_\mathrm{r} \biggr]
\end{cases}\\
\text{(B2)}
&\Leftrightarrow
\begin{cases}
\, \tilde{E}_\mathrm{i} e^{i(k_2-k_3) d} + \tilde{E}_\mathrm{r} e^{-i(k_2+k_3) d} = E_\mathrm{t} \\
\, \tilde{E}_\mathrm{i} e^{i(k_2-k_3) d} - \tilde{E}_\mathrm{r} e^{-i(k_2+k_3) d} = (N_3/N_2) E_\mathrm{t}
\end{cases}\\
&\Leftrightarrow
\begin{cases}
\, \displaystyle
\tilde{E}_\mathrm{i}
= \frac{1}{2}\biggl(1+\frac{N_3}{N_2} \biggr) E_\mathrm{t} e^{i(-k_2+k_3) d} \\[8pt]
\, \displaystyle
\tilde{E}_\mathrm{r}
= \frac{1}{2}\biggl(1-\frac{N_3}{N_2} \biggr) E_\mathrm{t} e^{i(k_2+k_3) d}
\end{cases}
\end{aligned}
であるから,
\begin{aligned}
E_\mathrm{i}
&=\frac{1}{4}\biggl[\biggl(1+\frac{N_2}{N_1} \biggr) \biggl(1+\frac{N_3}{N_2} \biggr)e^{-ik_2d}
+\biggl(1-\frac{N_2}{N_1} \biggr) \biggl(1-\frac{N_3}{N_2} \biggr)e^{ik_2d} \biggr] e^{ik_3 d}E_\mathrm{t} \\
&=\underbrace{
\frac{1}{2}\biggl[\biggl(1+\frac{N_3}{N_1} \biggr) \cos(k_2 d)
-i\biggl(\frac{N_2}{N_1}+\frac{N_3}{N_2} \biggr)\sin(k_2 d) \biggr] e^{ik_3 d}}_{=A} E_\mathrm{t} \\
E_\mathrm{r}
&=\frac{1}{4}\biggl[\biggl(1-\frac{N_2}{N_1} \biggr) \biggl(1+\frac{N_3}{N_2} \biggr)e^{-ik_2d}
+\biggl(1+\frac{N_2}{N_1} \biggr) \biggl(1-\frac{N_3}{N_2} \biggr)e^{ik_2d} \biggr] e^{ik_3 d}E_\mathrm{t} \\
&=\underbrace{
\frac{1}{2}\biggl[\biggl(1-\frac{N_3}{N_1} \biggr) \cos(k_2 d)
+i\biggl(\frac{N_2}{N_1}-\frac{N_3}{N_2} \biggr)\sin(k_2 d) \biggr] e^{ik_3 d}}_{=B} E_\mathrm{t}
\end{aligned}
となる.

以上より,反射波・透過波の振幅を「入射波の振幅」を用いて表すと

振幅
\begin{aligned}
E_\mathrm{r}
&=\frac{B}{A} E_\mathrm{i} \\
&=\frac{\bigl(1-\frac{N_2}{N_1} \bigr) \bigl(1+\frac{N_3}{N_2} \bigr)e^{-ik_2d}
+\bigl(1+\frac{N_2}{N_1} \bigr) \bigl(1-\frac{N_3}{N_2} \bigr)e^{ik_2d}}
{\bigl(1+\frac{N_2}{N_1} \bigr) \bigl(1+\frac{N_3}{N_2} \bigr)e^{-ik_2d}
+\bigl(1-\frac{N_2}{N_1} \bigr) \bigl(1-\frac{N_3}{N_2} \bigr)e^{ik_2d}}
E_\mathrm{i} \\
E_\mathrm{t}
&=\frac{1}{A} E_\mathrm{i} \\
&=\frac{4 e^{-ik_3 d}}
{\bigl(1+\frac{N_2}{N_1} \bigr) \bigl(1+\frac{N_3}{N_2} \bigr)e^{-ik_2d}
+\bigl(1-\frac{N_2}{N_1} \bigr) \bigl(1-\frac{N_3}{N_2} \bigr)e^{ik_2d}} E_\mathrm{i}
\end{aligned}
となる.

エネルギーの反射率$r$と透過率$t$(定義や表式は関連記事[A]参照)は,それぞれ

反射率・透過率
\begin{aligned}
r&=\biggl| \frac{E_\mathrm{r}}{E_\mathrm{i}}\biggr|^2
=\biggl| \frac{B}{A}\biggr|^2 \\
&=\frac{\displaystyle -2+\biggl(\frac{N_3}{N_1}+\frac{N_1}{N_3}\biggr)\cos^2(k_2 d)
+\biggl(\frac{N_2^2}{N_1 N_3}+\frac{N_1 N_3}{N_2^2}\biggr)\sin^2(k_2 d)}
{\displaystyle 2+\biggl(\frac{N_3}{N_1}+\frac{N_1}{N_3}\biggr)\cos^2(k_2 d)
+\biggl(\frac{N_2^2}{N_1 N_3}+\frac{N_1 N_3}{N_2^2}\biggr)\sin^2(k_2 d)} \\
t&=\frac{N_3}{N_1} \biggl| \frac{E_\mathrm{t}}{E_\mathrm{i}}\biggr|^2
=\frac{N_3}{N_1} \biggl| \frac{1}{A}\biggr|^2\\
&=\frac{4}{\displaystyle 2+\biggl(\frac{N_3}{N_1}+\frac{N_1}{N_3}\biggr)\cos^2(k_2 d)
+\biggl(\frac{N_2^2}{N_1 N_3}+\frac{N_1 N_3}{N_2^2}\biggr)\sin^2(k_2 d)}
\end{aligned}
と表せる.ここで,
\begin{aligned}
&\Biggl|\biggl(1\pm\frac{N_3}{N_1} \biggr) \cos(k_2 d)
-i\biggl(\pm\frac{N_2}{N_1}+\frac{N_3}{N_2} \biggr)\sin(k_2 d) \Biggr|^2 \\
&=\Biggl[1\pm2\frac{N_3}{N_1} + \biggl(\frac{N_3}{N_1}\biggr)^2\Biggr] \cos^2(k_2 d)
+\Biggl[\biggl(\frac{N_2}{N_1}\biggr)^2\pm2\frac{N_3}{N_1}+\biggl(\frac{N_3}{N_2}\biggr)^2\Biggr] \sin^2(k_2 d) \\
&=\frac{N_3}{N_1}
\Biggl[\pm 2+\biggl(\frac{N_3}{N_1}+\frac{N_1}{N_3}\biggr)\cos^2(k_2 d)
+\biggl(\frac{N_2^2}{N_1 N_3}+\frac{N_1 N_3}{N_2^2}\biggr)\sin^2(k_2 d)\Biggr]
\end{aligned}
を用いた.

音波

関連記事[A]で触れたように,電磁波の計算で$E\to P, N_i\to Z_i$と置き換えれば良い.

波の反射・透過を追跡して合成する方法

関連記事[A]で扱っている2層の反射・透過の問題を繰り返し適用し,全ての波を合成しても上と同じ結果が得られます(定常的な状態は,無限に長い時間が経過した後に達すると考えられるわけですが,無限回の反射も無限に長い時間を考えているわけです).

ここで,層$i$から層$j$へ平面波が入射するときの「振幅」反射率$R_{ij}$と「振幅」透過率$T_{ij}$は

\begin{aligned}
R_{ij}
&=
\begin{cases}
\, \dfrac{N_i - N_j}{N_i + N_j} &( i,j \in \{1,2\}) \\[8pt]
\, \dfrac{N_i - N_j}{N_i + N_j}e^{i2k_i d} & (i,j \in \{2,3\})
\end{cases} \\
T_{ij}
&=
\begin{cases}
\, \dfrac{2N_i}{N_i + N_j} & (i,j \in \{1,2\}) \\[8pt]
\, \dfrac{2N_i}{N_i + N_j} e^{i(k_i - k_j) d} & (i,j \in \{2,3\})
\end{cases}
\end{aligned}
となります(関連記事[A]を参照).
全ての波を合成する方法
全ての波を合成する方法.枠で囲んだ部分において,2層の反射・透過の問題を適用する.

よって,透過振幅は

\begin{aligned}
E_\mathrm{t}
&=\Bigl[T_{12} T_{23}
+ T_{12} \overbrace{ R_{23} R_{21}}^{\mathrlap{=\xi=-R_{12}R_{23}}} T_{23} \\
& \qquad
+ T_{12} \xi^2 T_{23}
+T_{12} \xi^3 T_{23}
+\cdots \Bigr]E_\mathrm{i} \\
&=T_{12}
\biggl( \underbrace{\sum_{n=0}^{\infty}\xi^n}_{=\frac{1}{1-\xi}} \biggr)
T_{23} E_\mathrm{i} \\
&=T_{12}
\frac{1}{1 +R_{12} R_{23}}
T_{23} E_\mathrm{i} \\
&=\frac{4 e^{-i k_3 d}}
{\frac{2}{T_{12}} \frac{2}{T_{23} e^{-i (k_2 - k_3) d}} e^{-ik_2 d}
+\frac{2 R_{12}}{T_{12}} \frac{2R_{23} e^{-i2k_2 d}}{T_{23} e^{-i (k_2 - k_3) d}} e^{ik_2 d}}
E_\mathrm{i} \\
&=\frac{4 e^{-i k_3 d}}
{\bigl(1 + \frac{N_2}{N_1}\bigr) \bigl(1 + \frac{N_3}{N_2}\bigr) e^{-ik_2 d}
+\bigl(1 - \frac{N_2}{N_1}\bigr) \bigl(1 - \frac{N_3}{N_2}\bigr) e^{ik_2 d} }
E_\mathrm{i}
\end{aligned}
となる($R_{21}=-R_{12}$).また,反射振幅は
\begin{aligned}
E_\mathrm{r}
&=\Bigl[R_{12}
+ \overbrace{T_{12} R_{23}}^{=\eta} T_{21}
+\eta \overbrace{R_{21} R_{23}}^{=\xi} T_{21} \\
&\qquad\qquad
+\eta \xi^2 T_{21} + \eta \xi^3 T_{21}
+\cdots \Bigr] E_\mathrm{i} \\
&=\biggl[R_{12}
+\eta \biggl( \underbrace{\sum_{n=0}^{\infty}\xi^n}_{=\frac{1}{1-\xi}} \biggr) T_{21} \biggr] E_\mathrm{i} \\
&=\frac{R_{12} (1+R_{12} R_{23}) + T_{12} R_{23}T_{21}}
{1+R_{12} R_{23}} E_\mathrm{i} \\
&=\frac{R_{12} + (R_{12}^2 + T_{12}T_{21})R_{23}}
{1+R_{12} R_{23}} E_\mathrm{i} \\
&=\frac{\frac{2 R_{12}}{T_{12}} \frac{2}{T_{23} e^{-i (k_2 - k_3) d}} e^{-ik_2 d}
+ \Bigl(R_{12}\frac{2 R_{12}}{T_{12}} + 2 T_{21} \Bigr)
\frac{2R_{23} e^{-i2k_2 d}}{T_{23} e^{-i (k_2 - k_3) d}} e^{ik_2 d}}
{\frac{2}{T_{12}} \frac{2}{T_{23} e^{-i (k_2 - k_3) d}} e^{-ik_2 d}
+\frac{2 R_{12}}{T_{12}} \frac{2R_{23} e^{-i2k_2 d}}{T_{23} e^{-i (k_2 - k_3) d}} e^{ik_2 d}}
E_\mathrm{i} \\
&=\frac{\bigl(1 - \frac{N_2}{N_1}\bigr) \bigl(1 + \frac{N_3}{N_2}\bigr) e^{-ik_2 d}
+ \bigl(1+\frac{N_2}{N_1}\bigr) \bigl(1 - \frac{N_3}{N_2}\bigr)e^{ik_2 d}}
{\bigl(1 + \frac{N_2}{N_1}\bigr) \bigl(1 + \frac{N_3}{N_2}\bigr) e^{-ik_2 d}
+\bigl(1 - \frac{N_2}{N_1}\bigr) \bigl(1 - \frac{N_3}{N_2}\bigr) e^{ik_2 d} }
E_\mathrm{i}
\end{aligned}
となる.(ここで
\begin{aligned}
&R_{12}\frac{2 R_{12}}{T_{12}} + 2 T_{21} \\
&=\frac{N_1 - N_2}{N_1 + N_2} \frac{N_1 - N_2}{N_1}
+\frac{4N_2}{N_1 + N_2} \\
&=\frac{(N_1 + N_2)^2}{N_1(N_1 + N_2)}\\
&=1+\frac{N_2}{N_1}
\end{aligned}
を用いた).

この振幅の表式は,上で「境界条件を課す方法」で導いたものと一致している.

参考文献

[1]詳解電磁気学演習:第10章$\S 1.$ 問題{1.3}(3層・垂直入射).※「理論電磁気学 第8章 問題(9)」と同じもの.
[2]理論電磁気学:第8章$\S 4$「電磁波の反射と屈折」