以下の書籍で紹介されている計算方法です.
ラプラシアンやdivを簡単に導くには,以下の方法もあります:
ラプラシアンの計算はヤコビアンを使うと簡単 - Notes_JP
記法
この記事では和を取る添字とそうでない添字が混在するので,$\sum$を省略しない.以下,
- $\bm{e}_{\#}$は規格化された基底ベクトルを表す.
- リーマン計量を$g_{ij} = (\partial_{y^{i}}, \partial_{y^{j}})$とする.
ベクトル解析と微分形式の対応
- ベクトル解析のベクトル基と接ベクトルの基を,$\bm{e}_{i} \leftrightarrow \partial_{i} / \sqrt{g_{ii}}$で同一視する.
- 接ベクトルの基と余接ベクトルの双対基を$\partial_{y^{i}} \leftrightarrow \sum_{j} g_{ij} \mathrm{d}y^{j}$で同一視する.
- 接ベクトルの基と($3-1$)-形式の基を$\displaystyle \partial_{y^{i}} \leftrightarrow \frac{1}{2}\sum_{j,k} \epsilon_{ijk} \sqrt{G} \mathrm{d}y^{j} \wedge \mathrm{d}y^{k} \, (=i_{y^{j}} \mathrm{vol}^{3})$で同一視する($G=\det (g_{ij})$).
まとめると,
- ベクトル解析のベクトル,接ベクトル,1-形式を次で同一視する.\begin{aligned}
\bm{e}_{i}
\leftrightarrow
\partial_{i} / \sqrt{g_{ii}}
\leftrightarrow
\sum_{j} g_{ij} \mathrm{d}y^{j} / \sqrt{g_{ii}}
\end{aligned} - ベクトル解析のベクトル,接ベクトル,($3-1$)-形式を次で同一視する.\begin{aligned}注(【参考】完全反対称テンソルの縮約公式 - Notes_JP):
&\bm{e}_{i}
\leftrightarrow
\partial_{i} / \sqrt{g_{ii}}
\leftrightarrow
\frac{1}{2}\sum_{j,k} \epsilon_{ijk} \sqrt{G/g_{ii}} \mathrm{d}y^{j} \wedge \mathrm{d}y^{k} \\
&(\text{i.e. } \sum_{i} \epsilon_{ijk} \sqrt{g_{ii}/G} \bm{e}_{i}
\leftrightarrow \mathrm{d}y^{j} \wedge \mathrm{d}y^{k} )
\end{aligned}\begin{aligned}
& \sum_{i} \epsilon_{ijk} \sqrt{g_{ii}/G} \bm{e}_{i} \\
& \leftrightarrow
\frac{1}{2}\sum_{l,m}
\underbrace{\sum_{i}\epsilon_{ijk}\epsilon_{ilm}}_{=\delta_{jl}\delta_{km} - \delta_{jm}\delta_{kl}}
\mathrm{d}y^{l} \wedge \mathrm{d}y^{m} \\
& \quad = \mathrm{d}y^{j} \wedge \mathrm{d}y^{k}
\end{aligned}
grad
0-形式$f$に対して$\displaystyle \mathrm{d}f = \sum_{j} (\bm{\nabla} f)_{j} \frac{\mathrm{d}y^{j}}{\sqrt{g_{jj}}}$であり,接ベクトル(反変ベクトル)の成分に変換した$\displaystyle (\bm{\nabla} f)^{j} = \sum_{k} g^{jk} (\bm{\nabla} f)_{k}$としてベクトル解析のgradが求められる.\begin{aligned}
\mathrm{d}f
& = \sum_{j} \partial_{y^{j}} f \mathrm{d}y^{j} \\
& = \sum_{j} \sqrt{g_{jj}} \partial_{y^{j}} f \frac{\mathrm{d}y^{j}}{\sqrt{g_{jj}}}
\end{aligned}
より,\mathrm{d}f
& = \sum_{j} \partial_{y^{j}} f \mathrm{d}y^{j} \\
& = \sum_{j} \sqrt{g_{jj}} \partial_{y^{j}} f \frac{\mathrm{d}y^{j}}{\sqrt{g_{jj}}}
\end{aligned}
\begin{aligned}
(\bm{\nabla} f)^{j}
& = \sum_{k} g^{jk} \sqrt{g_{jj}} \partial_{y^{j}} f
\end{aligned}
(\bm{\nabla} f)^{j}
& = \sum_{k} g^{jk} \sqrt{g_{jj}} \partial_{y^{j}} f
\end{aligned}
rot
rot (curl) のベクトル解析での表式は,「ベクトルを1-形式に変換し,外微分を計算したあとに($3-1$)-形式をベクトルに戻す」ことで得られる.接ベクトル$\displaystyle u=\sum_{r} u^{r} \frac{\partial_{y^{r}}}{\sqrt{g_{rr}}}$と同一視される1-形式$\displaystyle u=\sum_{r} (\sum_{l} g_{rl}u^{l} ) \frac{\mathrm{d}y^{r}}{\sqrt{g_{rr}}}$に対して,$\displaystyle \mathrm{d}u = \sum_{j} (\bm{\nabla}\times \bm{u})^{j} \cdot i_{y^{j}} \mathrm{vol}^{3}$と求めることができる.
ベクトルを1-形式に変換すると
\begin{aligned}
& \bm{u} = \sum_{r} u^{r} \bm{e}_{r} \\
& \leftrightarrow
u = \sum_{r} u^{r} \biggl(\sum_{l} \frac{g_{rl}}{\sqrt{g_{rr}}} \mathrm{d}y^{l} \biggr) \\
&\qquad
= \sum_{l} \biggl(\sum_{r} \frac{g_{rl}}{\sqrt{g_{rr}}} u^{r}\biggr) \mathrm{d}y^{l}
\end{aligned}
& \bm{u} = \sum_{r} u^{r} \bm{e}_{r} \\
& \leftrightarrow
u = \sum_{r} u^{r} \biggl(\sum_{l} \frac{g_{rl}}{\sqrt{g_{rr}}} \mathrm{d}y^{l} \biggr) \\
&\qquad
= \sum_{l} \biggl(\sum_{r} \frac{g_{rl}}{\sqrt{g_{rr}}} u^{r}\biggr) \mathrm{d}y^{l}
\end{aligned}
外微分を計算し,($3-1$)-形式に戻すと
\begin{aligned}
&\mathrm{d}u
= \sum_{k, l}
\partial_{y^{k}}\biggl(\sum_{r} \frac{g_{rl}}{\sqrt{g_{rr}}} u^{r} \biggr)
\mathrm{d}y^{k}\wedge \mathrm{d}y^{l} \\
& \leftrightarrow \bm{\nabla} \times \bm{u}\\
&\quad
=\sum_{k, l}
\biggl[
\partial_{y^{k}}\biggl(\sum_{r} \frac{g_{rl}}{\sqrt{g_{rr}}} u^{r} \biggr)
\cdot \sum_{j} \epsilon_{jkl} \sqrt{\frac{g_{jj}}{G}} \bm{e}_{j}
\biggr] \\
&\quad
= \sum_{j,k,l} \epsilon_{jkl} \sqrt{\frac{g_{jj}}{G}}
\partial_{y^{k}}\biggl(\sum_{r} \frac{g_{rl}}{\sqrt{g_{rr}}} u^{r} \biggr)
\bm{e}_{j}
\end{aligned}
&\mathrm{d}u
= \sum_{k, l}
\partial_{y^{k}}\biggl(\sum_{r} \frac{g_{rl}}{\sqrt{g_{rr}}} u^{r} \biggr)
\mathrm{d}y^{k}\wedge \mathrm{d}y^{l} \\
& \leftrightarrow \bm{\nabla} \times \bm{u}\\
&\quad
=\sum_{k, l}
\biggl[
\partial_{y^{k}}\biggl(\sum_{r} \frac{g_{rl}}{\sqrt{g_{rr}}} u^{r} \biggr)
\cdot \sum_{j} \epsilon_{jkl} \sqrt{\frac{g_{jj}}{G}} \bm{e}_{j}
\biggr] \\
&\quad
= \sum_{j,k,l} \epsilon_{jkl} \sqrt{\frac{g_{jj}}{G}}
\partial_{y^{k}}\biggl(\sum_{r} \frac{g_{rl}}{\sqrt{g_{rr}}} u^{r} \biggr)
\bm{e}_{j}
\end{aligned}
※ $g_{rl}=g_{lr}$を使えば,書籍と同じ式になる.
div
2-形式$w$を上の方法でベクトル$\bm{w}$と同一視するとき,$\mathrm{d}w = (\bm{\nabla}\cdot \bm{w}) \sqrt{G} \mathrm{d}y^{1}\wedge \mathrm{d}y^{2}\wedge \mathrm{d}y^{3} \,(= (\bm{\nabla}\cdot \bm{w}) \mathrm{vol}^{3})$として,ベクトル解析のdivが求められる.\begin{aligned}
\bm{w} = \sum_{k} w^{k} \bm{e}_{k}
\end{aligned}
に対応する2-形式は\bm{w} = \sum_{k} w^{k} \bm{e}_{k}
\end{aligned}
\begin{aligned}
w = \sum_{klm} w^{k} \frac{1}{2} \epsilon_{klm} \sqrt{\frac{G}{g_{kk}}} \mathrm{d}y^{l} \wedge \mathrm{d}y^{m}
\end{aligned}
w = \sum_{klm} w^{k} \frac{1}{2} \epsilon_{klm} \sqrt{\frac{G}{g_{kk}}} \mathrm{d}y^{l} \wedge \mathrm{d}y^{m}
\end{aligned}
\begin{aligned}
\mathrm{d} w
&= \frac{1}{2} \sum_{klmn} \epsilon_{klm}
\partial_{y^{n}} \Biggl(\sqrt{\frac{G}{g_{kk}}} w^{k} \Biggr)
\underbrace{\mathrm{d}y^{n} \wedge \mathrm{d}y^{l} \wedge \mathrm{d}y^{m}}_{=\epsilon_{nlm} \mathrm{d}y^{1} \wedge\mathrm{d}y^{2} \wedge\mathrm{d}y^{3} } \\
&= \sum_{k} \frac{1}{\sqrt{G}} \partial_{y^{k}} \Biggl(\sqrt{\frac{G}{g_{kk}}} w^{k} \Biggr)
\cdot \underbrace{\sqrt{G} \mathrm{d}y^{1} \wedge\mathrm{d}y^{2} \wedge\mathrm{d}y^{3}}_{=\mathrm{vol}^{n}}
\end{aligned}
\mathrm{d} w
&= \frac{1}{2} \sum_{klmn} \epsilon_{klm}
\partial_{y^{n}} \Biggl(\sqrt{\frac{G}{g_{kk}}} w^{k} \Biggr)
\underbrace{\mathrm{d}y^{n} \wedge \mathrm{d}y^{l} \wedge \mathrm{d}y^{m}}_{=\epsilon_{nlm} \mathrm{d}y^{1} \wedge\mathrm{d}y^{2} \wedge\mathrm{d}y^{3} } \\
&= \sum_{k} \frac{1}{\sqrt{G}} \partial_{y^{k}} \Biggl(\sqrt{\frac{G}{g_{kk}}} w^{k} \Biggr)
\cdot \underbrace{\sqrt{G} \mathrm{d}y^{1} \wedge\mathrm{d}y^{2} \wedge\mathrm{d}y^{3}}_{=\mathrm{vol}^{n}}
\end{aligned}
注(【参考】完全反対称テンソルの縮約公式 - Notes_JP):$\displaystyle \sum_{lm} \epsilon_{klm}\epsilon_{nlm} = 2\delta_{kn}$.
よって,
\begin{aligned}
\bm{\nabla}\cdot \bm{w}
&= \sum_{k} \frac{1}{\sqrt{G}} \partial_{y^{k}} \Biggl(\sqrt{\frac{G}{g_{kk}}} w^{k} \Biggr)
\end{aligned}
\bm{\nabla}\cdot \bm{w}
&= \sum_{k} \frac{1}{\sqrt{G}} \partial_{y^{k}} \Biggl(\sqrt{\frac{G}{g_{kk}}} w^{k} \Biggr)
\end{aligned}
計算例(直交曲線座標)
直交曲線座標では,$(\mathrm{d}s)^{2}=\sum_{k} g_{kk}( \mathrm{d}y^{k})^{2}$であるから,\begin{aligned}
(\bm{\nabla} f)^{j}
& = \sum_{k} g^{jk} \sqrt{g_{jj}} \partial_{y^{j}} f \\
& = g^{jj} \sqrt{g_{jj}} \partial_{y^{j}} f \\
&= \frac{1}{\sqrt{g_{jj}}} \partial_{y^{j}} f
\end{aligned}
(\bm{\nabla} f)^{j}
& = \sum_{k} g^{jk} \sqrt{g_{jj}} \partial_{y^{j}} f \\
& = g^{jj} \sqrt{g_{jj}} \partial_{y^{j}} f \\
&= \frac{1}{\sqrt{g_{jj}}} \partial_{y^{j}} f
\end{aligned}
\begin{aligned}
(\bm{\nabla} \times \bm{u})^{j}
& = \sum_{k,l} \epsilon_{jkl} \sqrt{\frac{g_{jj}}{G}}
\partial_{y^{k}}\biggl(\sum_{r} \frac{g_{rl}}{\sqrt{g_{rr}}} u^{r} \biggr) \\
& = \sum_{k,l} \epsilon_{jkl} \frac{1}{\sqrt{g_{kk}g_{ll}}}
\partial_{y^{k}}\bigl(\sqrt{g_{ll}} u^{l} \bigr)
\end{aligned}
(\bm{\nabla} \times \bm{u})^{j}
& = \sum_{k,l} \epsilon_{jkl} \sqrt{\frac{g_{jj}}{G}}
\partial_{y^{k}}\biggl(\sum_{r} \frac{g_{rl}}{\sqrt{g_{rr}}} u^{r} \biggr) \\
& = \sum_{k,l} \epsilon_{jkl} \frac{1}{\sqrt{g_{kk}g_{ll}}}
\partial_{y^{k}}\bigl(\sqrt{g_{ll}} u^{l} \bigr)
\end{aligned}
以下で,極座標と円筒座標で具体的に計算する.一覧は以下に記載されている.
Del in cylindrical and spherical coordinates - Wikipedia
極座標(球座標)
$(\mathrm{d}s)^2=(\mathrm{d}r)^2+ (r \,\mathrm{d}\theta )^2 + (r\sin\theta \,\mathrm{d}\phi )^2$から,計量テンソルは\begin{aligned}
(g_{ij})
&=
\begin{pmatrix}
1&0&0 \\
0&r^2&0 \\
0&0&r^2\sin^2\theta
\end{pmatrix}\\
(g^{ij})
&=(g_{ij})^{-1}\\
&=
\begin{pmatrix}
1&0&0 \\
0&1/r^2&0 \\
0&0&1/r^2\sin^2\theta
\end{pmatrix}
\end{aligned}
(g_{ij})
&=
\begin{pmatrix}
1&0&0 \\
0&r^2&0 \\
0&0&r^2\sin^2\theta
\end{pmatrix}\\
(g^{ij})
&=(g_{ij})^{-1}\\
&=
\begin{pmatrix}
1&0&0 \\
0&1/r^2&0 \\
0&0&1/r^2\sin^2\theta
\end{pmatrix}
\end{aligned}
grad
\begin{aligned}
(\bm{\nabla} f)^{r}
&= \partial_{r} f \\
(\bm{\nabla} f)^{\theta}
&= \frac{1}{r} \partial_{\theta} f \\
(\bm{\nabla} f)^{\phi}
&= \frac{1}{r\sin\theta} \partial_{\phi} f
\end{aligned}
(\bm{\nabla} f)^{r}
&= \partial_{r} f \\
(\bm{\nabla} f)^{\theta}
&= \frac{1}{r} \partial_{\theta} f \\
(\bm{\nabla} f)^{\phi}
&= \frac{1}{r\sin\theta} \partial_{\phi} f
\end{aligned}
rot
\begin{aligned}
(\bm{\nabla} \times \bm{u})^{r}
&= \frac{1}{\sqrt{g_{\theta\theta}g_{\phi\phi}}}
\bigl[
\partial_{\theta}\bigl(\sqrt{g_{\phi\phi}} u^{\phi} \bigr)
- \partial_{\phi}\bigl(\sqrt{g_{\theta\theta}} u^{\theta} \bigr)
\bigr] \\
&= \frac{1}{r^{2}\sin\theta}
\bigl[
\partial_{\theta}\bigl(r\sin\theta u^{\phi} \bigr)
- \partial_{\phi}\bigl(r u^{\theta} \bigr)
\bigr] \\
&= \frac{1}{r\sin\theta}
\bigl[
\partial_{\theta}\bigl(\sin\theta u^{\phi} \bigr)
- \partial_{\phi} u^{\theta}
\bigr] \\
(\bm{\nabla} \times \bm{u})^{\theta}
&= \frac{1}{\sqrt{g_{\phi\phi}g_{rr}}}
\bigl[
\partial_{\phi}\bigl(\sqrt{g_{rr}} u^{r} \bigr)
- \partial_{r}\bigl(\sqrt{g_{\phi\phi}} u^{\phi} \bigr)
\bigr] \\
&=\frac{1}{r\sin\theta}
\bigl[
\partial_{\phi} u^{r}
- \partial_{r}\bigl(r\sin\theta u^{\phi} \bigr)
\bigr] \\
&=\frac{1}{r}
\biggl[
\frac{1}{\sin\theta} \partial_{\phi} u^{r}
- \partial_{r}\bigl(r u^{\phi} \bigr)
\biggr] \\
(\bm{\nabla} \times \bm{u})^{\phi}
&= \frac{1}{\sqrt{g_{rr}g_{\theta\theta}}}
\bigl[
\partial_{r}\bigl(\sqrt{g_{\theta\theta}} u^{\theta} \bigr)
- \partial_{\theta}\bigl(\sqrt{g_{rr}} u^{r} \bigr)
\bigr] \\
&= \frac{1}{r}
\bigl[
\partial_{r}\bigl(r u^{\theta} \bigr)
- \partial_{\theta} u^{r}
\bigr]
\end{aligned}
(\bm{\nabla} \times \bm{u})^{r}
&= \frac{1}{\sqrt{g_{\theta\theta}g_{\phi\phi}}}
\bigl[
\partial_{\theta}\bigl(\sqrt{g_{\phi\phi}} u^{\phi} \bigr)
- \partial_{\phi}\bigl(\sqrt{g_{\theta\theta}} u^{\theta} \bigr)
\bigr] \\
&= \frac{1}{r^{2}\sin\theta}
\bigl[
\partial_{\theta}\bigl(r\sin\theta u^{\phi} \bigr)
- \partial_{\phi}\bigl(r u^{\theta} \bigr)
\bigr] \\
&= \frac{1}{r\sin\theta}
\bigl[
\partial_{\theta}\bigl(\sin\theta u^{\phi} \bigr)
- \partial_{\phi} u^{\theta}
\bigr] \\
(\bm{\nabla} \times \bm{u})^{\theta}
&= \frac{1}{\sqrt{g_{\phi\phi}g_{rr}}}
\bigl[
\partial_{\phi}\bigl(\sqrt{g_{rr}} u^{r} \bigr)
- \partial_{r}\bigl(\sqrt{g_{\phi\phi}} u^{\phi} \bigr)
\bigr] \\
&=\frac{1}{r\sin\theta}
\bigl[
\partial_{\phi} u^{r}
- \partial_{r}\bigl(r\sin\theta u^{\phi} \bigr)
\bigr] \\
&=\frac{1}{r}
\biggl[
\frac{1}{\sin\theta} \partial_{\phi} u^{r}
- \partial_{r}\bigl(r u^{\phi} \bigr)
\biggr] \\
(\bm{\nabla} \times \bm{u})^{\phi}
&= \frac{1}{\sqrt{g_{rr}g_{\theta\theta}}}
\bigl[
\partial_{r}\bigl(\sqrt{g_{\theta\theta}} u^{\theta} \bigr)
- \partial_{\theta}\bigl(\sqrt{g_{rr}} u^{r} \bigr)
\bigr] \\
&= \frac{1}{r}
\bigl[
\partial_{r}\bigl(r u^{\theta} \bigr)
- \partial_{\theta} u^{r}
\bigr]
\end{aligned}
div
\begin{aligned}
& \bm{\nabla}\cdot \bm{w} \\
&= \frac{1}{r^{2}\sin\theta}
\bigl[
\partial_{r} \bigl(r^{2}\sin\theta w^{r} \bigr)
+ \partial_{\theta} \bigl(r\sin\theta w^{\theta} \bigr)
+ \partial_{\phi} \bigl(r w^{\phi} \bigr)
\bigr] \\
&= \frac{1}{r^{2}} \partial_{r} \bigl(r^{2} w^{r} \bigr)
+ \frac{1}{r\sin\theta} \partial_{\theta} \bigl(\sin\theta w^{\theta} \bigr)
+ \frac{1}{r\sin\theta} \partial_{\phi} w^{\phi}
\end{aligned}
& \bm{\nabla}\cdot \bm{w} \\
&= \frac{1}{r^{2}\sin\theta}
\bigl[
\partial_{r} \bigl(r^{2}\sin\theta w^{r} \bigr)
+ \partial_{\theta} \bigl(r\sin\theta w^{\theta} \bigr)
+ \partial_{\phi} \bigl(r w^{\phi} \bigr)
\bigr] \\
&= \frac{1}{r^{2}} \partial_{r} \bigl(r^{2} w^{r} \bigr)
+ \frac{1}{r\sin\theta} \partial_{\theta} \bigl(\sin\theta w^{\theta} \bigr)
+ \frac{1}{r\sin\theta} \partial_{\phi} w^{\phi}
\end{aligned}
円筒座標
$(\mathrm{d}s )^2=(\mathrm{d}r)^2+(r \,\mathrm{d}\theta )^2 +(\mathrm{d}z)^2$から,計量テンソルは\begin{aligned}
(g_{ij})
&=
\begin{pmatrix}
1&0&0 \\
0&r^2&0 \\
0&0&1
\end{pmatrix}\\
(g^{ij})
&=(g_{ij})^{-1}\\
&=
\begin{pmatrix}
1&0&0 \\
0&1/r^2&0 \\
0&0&1
\end{pmatrix}
\end{aligned}
(g_{ij})
&=
\begin{pmatrix}
1&0&0 \\
0&r^2&0 \\
0&0&1
\end{pmatrix}\\
(g^{ij})
&=(g_{ij})^{-1}\\
&=
\begin{pmatrix}
1&0&0 \\
0&1/r^2&0 \\
0&0&1
\end{pmatrix}
\end{aligned}
grad
\begin{aligned}
(\bm{\nabla} f)^{r}
&= \partial_{r} f \\
(\bm{\nabla} f)^{\theta}
&= \frac{1}{r} \partial_{\theta} f \\
(\bm{\nabla} f)^{z}
&= \partial_{z} f
\end{aligned}
(\bm{\nabla} f)^{r}
&= \partial_{r} f \\
(\bm{\nabla} f)^{\theta}
&= \frac{1}{r} \partial_{\theta} f \\
(\bm{\nabla} f)^{z}
&= \partial_{z} f
\end{aligned}
rot
\begin{aligned}
(\bm{\nabla} \times \bm{u})^{r}
&= \frac{1}{\sqrt{g_{\theta\theta}g_{zz}}}
\bigl[
\partial_{\theta}\bigl(\sqrt{g_{zz}} u^{z} \bigr)
- \partial_{z}\bigl(\sqrt{g_{\theta\theta}} u^{\theta} \bigr)
\bigr] \\
&= \frac{1}{r}
\bigl[
\partial_{\theta} u^{z}
- \partial_{z}\bigl(r u^{\theta} \bigr)
\bigr] \\
&= \frac{1}{r} \partial_{\theta} u^{z}
-\partial_{z} u^{\theta} \\
(\bm{\nabla} \times \bm{u})^{\theta}
&= \frac{1}{\sqrt{g_{zz}g_{rr}}}
\bigl[
\partial_{z}\bigl(\sqrt{g_{rr}} u^{r} \bigr)
- \partial_{r}\bigl(\sqrt{g_{zz}} u^{z} \bigr)
\bigr] \\
&= \partial_{z} u^{r}
- \partial_{r} u^{z} \\
(\bm{\nabla} \times \bm{u})^{z}
&= \frac{1}{\sqrt{g_{rr}g_{\theta\theta}}}
\bigl[
\partial_{r}\bigl(\sqrt{g_{\theta\theta}} u^{\theta} \bigr)
- \partial_{\theta}\bigl(\sqrt{g_{rr}} u^{r} \bigr)
\bigr] \\
&= \frac{1}{r}
\bigl[
\partial_{r}\bigl(r u^{\theta} \bigr)
- \partial_{\theta} u^{r}
\bigr]
\end{aligned}
(\bm{\nabla} \times \bm{u})^{r}
&= \frac{1}{\sqrt{g_{\theta\theta}g_{zz}}}
\bigl[
\partial_{\theta}\bigl(\sqrt{g_{zz}} u^{z} \bigr)
- \partial_{z}\bigl(\sqrt{g_{\theta\theta}} u^{\theta} \bigr)
\bigr] \\
&= \frac{1}{r}
\bigl[
\partial_{\theta} u^{z}
- \partial_{z}\bigl(r u^{\theta} \bigr)
\bigr] \\
&= \frac{1}{r} \partial_{\theta} u^{z}
-\partial_{z} u^{\theta} \\
(\bm{\nabla} \times \bm{u})^{\theta}
&= \frac{1}{\sqrt{g_{zz}g_{rr}}}
\bigl[
\partial_{z}\bigl(\sqrt{g_{rr}} u^{r} \bigr)
- \partial_{r}\bigl(\sqrt{g_{zz}} u^{z} \bigr)
\bigr] \\
&= \partial_{z} u^{r}
- \partial_{r} u^{z} \\
(\bm{\nabla} \times \bm{u})^{z}
&= \frac{1}{\sqrt{g_{rr}g_{\theta\theta}}}
\bigl[
\partial_{r}\bigl(\sqrt{g_{\theta\theta}} u^{\theta} \bigr)
- \partial_{\theta}\bigl(\sqrt{g_{rr}} u^{r} \bigr)
\bigr] \\
&= \frac{1}{r}
\bigl[
\partial_{r}\bigl(r u^{\theta} \bigr)
- \partial_{\theta} u^{r}
\bigr]
\end{aligned}
div
\begin{aligned}
&\bm{\nabla}\cdot \bm{w} \\
&= \frac{1}{r}
\bigl[
\partial_{r} \bigl(r w^{r} \bigr)
+ \partial_{\theta} w^{\theta}
+ \partial_{z} \bigl(r w^{z} \bigr)
\bigr] \\
&= \frac{1}{r} \partial_{r} \bigl(r w^{r} \bigr)
+\frac{1}{r} \partial_{\theta} w^{\theta}
+ \partial_{z} w^{z}
\end{aligned}
&\bm{\nabla}\cdot \bm{w} \\
&= \frac{1}{r}
\bigl[
\partial_{r} \bigl(r w^{r} \bigr)
+ \partial_{\theta} w^{\theta}
+ \partial_{z} \bigl(r w^{z} \bigr)
\bigr] \\
&= \frac{1}{r} \partial_{r} \bigl(r w^{r} \bigr)
+\frac{1}{r} \partial_{\theta} w^{\theta}
+ \partial_{z} w^{z}
\end{aligned}