物理学-物理数学-ベクトル・テンソル

このカテゴリーの目次を作成しました:

フックの法則/ひずみテンソルの座標変換(極座標・円筒座標)

POINT フックの法則(ひずみテンソル)の座標変換の計算方法. テンソル演算により座標変換の一般式を求めた後,極座標・円筒座標の具体式を計算する. 以下で与えられる,座標変換後の歪テンソルの表式の導出方法です. 歪テンソル(極座標) 歪テンソル(…

ディアディック(ダイアド積)の計算

POINT ディアディック(ダイアド積)の計算方法について解説. 「行列」として計算すればベクトル解析の計算に帰着させることができる. 流体力学などのベクトル解析の計算では,「ディアディック(ダイアド積)」と呼ばれる量が現れることがあります.いき…

テンソルは関数として理解できる

POINT テンソルは「ベクトル(と転置ベクトル)」をいくつか与えると「値」を返す関数として理解できる. 例:行列$M$はテンソルである.なぜなら「ベクトル$\boldsymbol{v}$,$^{t}\boldsymbol{w}$」を与えると「値:${}^t\boldsymbol{w}M\boldsymbol{v}$」…

発散・ラプラシアンの計算法(極座標・円筒座標)

POINT 面倒な偏微分の計算(連鎖率・チェーンルール・合成関数の微分)無しでラプラシアンを計算する方法. 極座標・円筒座標の発散・ラプラシアンを数行で計算できる. 曲線座標系への一般化はこちら. 一般論(曲線座標系)における複雑な議論を徹底的に避…

「テンソル記法」から「ベクトル解析の記法」への変換方法

POINT テンソル演算で得られた結果を,ベクトル解析の記法に書き換える方法. テンソル解析ではベクトルの変換則を$\displaystyle A^{\prime\mu}=\frac{\partial x^{\prime\mu}}{\partial x^\nu}A^\nu$で定めるが,この計算で得られる成分はベクトル解析で扱…

【実用例】面積・体積の計算法

POINT 面積・体積の計算を丁寧に解説. 同じ例を複数の方法で計算する方法を紹介. 公式として覚えているものも,同じプロセスで導かれることを見てみましょう.いつでも導出できるようになると便利です.とりあえずは球を中心に作成しました.他の例も,こ…

テンソルと行列が混同される理由

POINT 「行列の成分」が「2階のテンソル(1階反変1階共変テンソル)の成分」になることが混乱の原因. この性質は「テンソルの商法則」の特別な場合に相当する. テンソルを関数と捉えて「行列がテンソルとなること」を示す方法もある. テンソルと行列の違…

テンソルの変換則とその導出

POINT 基底の変換則から,高階のテンソルの変換則が導かれる. 導出した変換則を一覧として整理した. 以前の記事で, 「線形空間$V$の基底・双対基底の変換則」から,自然に「反変・共変ベクトルの変換則」が導かれること を示しました.この議論を一般化す…

反変・共変ベクトルの変換則〜双対空間から理解する

POINT 双対空間は「相対論の共変ベクトル」や「量子力学のブラベクトル」として特に説明なく導入されている. 双対空間を学べば,共変ベクトルの変換則が自然に導かれる. ある線形空間 (ベクトル空間) に対し定義される「双対空間」は,物理の様々な場面で …

ラプラシアン(極座標・円筒座標・曲線座標)を超簡単に計算

POINT 曲線座標(極座標・円筒座標など)のラプラシアン・発散(ダイバージェンス)を数行で計算する方法. 合成関数の微分(連鎖率・チェーンルール)なしで計算できる. より一般の曲線座標(曲がった空間)でも同じ方法が使える. 極座標・円筒座標の計算…

【等長変換】回転・反転・Lorentz変換

POINT ユークリッド空間の距離を保つ変換は「回転」と「反転」で表される. ミンコフスキー空間の距離を保つ変換はLorentz変換となる. 距離を保つ変換が「回転」と「反転」で表されることはよく知られています.但し,これは「ユークリッド空間」での話です…

曲面積の求め方

POINT 定義さえ理解すれば,派生公式なしで計算が可能. 具体例として,回転体の表面積などの派生公式を導く. この記事を読めば,曲面積の定義式さえ理解しておけば,派生公式を覚える必要はないことがわかります!具体例を交えながら見ていきましょう. 曲…

【まとめ】ベクトル解析・行列の公式と導出

POINT ベクトル解析の公式と,その導出方法の一覧. 行列計算も統一的に理解できる. ベクトル解析の公式と,その導出方法を一覧にまとめました.力学・電磁気学・流体力学などを学ぶ上で,これらの計算はとても重要です.計算練習をして,すぐに公式を導出…

【導出】完全反対称テンソル(Levi-Civita 記号)の縮約公式

完全反対称テンソルの縮約POINT 「完全反対称テンソル(レビ・チビタ記号,エディントンのイプシロン)の縮約公式」を簡単に導出する方法. この公式は,ベクトル解析の計算で欠かすことができない. 慣れれば暗算で計算できるようになる. ベクトル解析の重…