物理学-物理数学-ベクトル・テンソル
POINT ベクトル解析の公式と,その導出方法の一覧. 行列計算も統一的に理解できる. ベクトル解析の公式と,その導出方法を一覧にまとめました.力学・電磁気学・流体力学などを学ぶ上で,これらの計算はとても重要です.計算練習をして,すぐに公式を導出…
完全反対称テンソルの縮約POINTベクトル解析の計算でよく使う「完全反対称テンソルの縮約公式」を簡単に導出する.ベクトル解析でよく使う公式に「完全反対称テンソルの縮約公式」があります. ※完全反対称テンソルは,レビ・チビタ記号,エディントンのイプ…
以下の書籍で紹介されている計算方法です.電磁気学とベクトル解析 (数学と物理の交差点 2)作者:吉田 善章共立出版Amazonラプラシアンやdivを簡単に導くには,以下の方法もあります: ラプラシアンの計算はヤコビアンを使うと簡単 - Notes_JP 記法 ベクトル…
POINT ヘルムホルツの定理(ヘルムホルツ分解)に関するメモ 【関連記事】 ベクトル解析の公式 - Notes_JP ヘルムホルツの定理 性質 div A = 0を満たすものが存在すること 参考文献 ヘルムホルツの定理ベクトル場$\bm{v}$は,スカラーポテンシャル$\phi $と…
POINT 射影の基本的性質. ベクトルのとても基本的,かつ便利な考え方です.この記事で紹介するのは,慣れればどれも当たり前に感じられる性質です. この考え方は,フーリエ級数などでも役に立ちます. 射影 基底による展開 直交成分 グラム・シュミットの…
POINT 座標軸を回転させるとき,「基底は同じ方向に回転」し,「ベクトルは逆方向に回転」する. 基底の変換則,ベクトルの変換則を導く. 結果をまとめておきます($R(\theta)$は回転行列). 変換則(ベクトル表記) 変換則(成分表記) 基底 $\boldsymbol{e}_…
POINT 磁場が軸性ベクトル(擬ベクトル)であることの説明方法. ベクトルには,空間反転で符号を変える「極性ベクトル」と符号を変えない「軸性ベクトル」がある. 右手系と左手系のどちらをとるかで磁場の向きは変わってしまうが,方程式は変わらない. 【…
POINT ベクトルの外積(ベクトル積,クロス積)の注意点について. 座標変換の表式を導く. ベクトルの外積について,こんな性質もあるんだよ!というものをまとめています.性質としては重要なものですが,「計算」ではあまり使わないため忘れてしまいがち…
POINT なぜ,応力がテンソルで表されるのか. 応力を考えると自然にテンソルが必要になる. 「テンソル(tensor)」の語源は「張力(tension)」であると言われています.ここでは,応力を考えることで,自然にテンソルの概念が現れることを見てみます. 【…
POINT ベクトル解析の積分公式. 積分以外の公式は次の記事を参照してください: ベクトル解析の公式 - Notes_JP ガウスの発散定理 スカラーの場合 テンソルへの拡張 参考文献 ガウスの発散定理一番スタンダードな形から導ける派生公式を紹介します.少し形…
POINT クリストッフェル記号の定義と性質について. 円筒座標系,極座標系の具体計算を行う. 定義 性質 円筒座標 極座標 参考文献/記事 定義\begin{aligned} \Gamma^{\alpha}_{\:\beta\gamma} &=g^{\alpha\mu} \Gamma_{\mu\beta\gamma} \\ \Gamma_{\alpha\b…
POINT フックの法則(ひずみテンソル)の座標変換の計算方法. テンソル演算により座標変換の一般式を求めた後,極座標・円筒座標の具体式を計算する. 以下で与えられる,座標変換後の歪テンソルの表式の導出方法です. 歪テンソル(極座標)(wikipedia) …
POINT ディアディック(ダイアド積)の計算方法について解説. 「行列」として計算すればベクトル解析の計算に帰着させることができる. 流体力学や電磁気学におけるベクトル解析の計算で,「ディアディック(ダイアド積)」と呼ばれる量が現れます.いきな…
POINT テンソルは「ベクトル(と転置ベクトル)」をいくつか与えると「値」を返す関数として理解できる. 例:行列$M$はテンソルである.なぜなら「ベクトル$\boldsymbol{v}$,$^{t}\boldsymbol{w}$」を与えると「値:${}^t\boldsymbol{w}M\boldsymbol{v}$」…
極座標のラプラシアンPOINT 数行でラプラシアン,divを計算する方法(極座標・円筒座標). 面倒な偏微分の計算(連鎖率・チェーンルール・合成関数の微分)は不要. 【前提知識】 極座標・円筒座標のナブラ(grad)の表式. 積分の変数変換の方法(ヤコビアン…
POINT テンソル演算で得られた結果を,ベクトル解析の記法に書き換える方法. テンソル解析ではベクトルの変換則を$\displaystyle A^{\prime\mu}=\frac{\partial x^{\prime\mu}}{\partial x^\nu}A^\nu$で定めるが,この計算で得られる成分はベクトル解析で扱…
POINT 面積・体積の計算を丁寧に解説. 同じ例を複数の方法で計算する方法を紹介. 公式として覚えているものも,同じプロセスで導かれることを見てみましょう.いつでも導出できるようになると便利です.とりあえずは球を中心に作成しました.他の例も,こ…
POINT ざっくり言えば,「テンソルの成分」と呼ばれる量を「行列の形」に並べると(表記や計算で)便利なことがある,というのが一つの答え.背景には,もう少し深い性質がある. 主な混乱の原因は,「行列の成分」が「2階のテンソル(1階反変1階共変テンソ…
POINT 基底の変換則から,高階のテンソルの変換則が導かれる. 導出した変換則を一覧として整理した. 以前の記事で, 「線形空間$V$の基底・双対基底の変換則」から,自然に「反変・共変ベクトルの変換則」が導かれること を示しました.この議論を一般化す…
POINT 双対空間は「相対論の共変ベクトル」や「量子力学のブラベクトル」として特に説明なく導入されている. 双対空間を学べば,共変ベクトルの変換則が自然に導かれる. ある線形空間 (ベクトル空間) に対し定義される「双対空間」は,物理の様々な場面で …
POINT 数行でラプラシアンやdivを計算できる方法(曲線座標). 合成関数の微分(連鎖率・チェーンルール)なしで計算できる. より一般の曲線座標(曲がった空間)でも同じ方法が使える. ちまちま偏微分の計算をするのではなく,積分計算に置き換えてしま…
POINT ユークリッド空間の距離を保つ変換は「回転」と「反転」で表される. ミンコフスキー空間の距離を保つ変換はLorentz変換となる. 距離を保つ変換が「回転」と「反転」で表されることはよく知られています.但し,これは「ユークリッド空間」での話です…
POINT 定義さえ理解しておけば,(派生)公式を覚えなくても計算できる. 具体例として,回転体の表面積の派生公式などを導く. 曲面積の定義 派生公式 球の表面積 グラフの曲面積($X=x$, $Y=y$, $Z=f(x,y)$) $y=f(x)$の回転体($X=x$, $Y=f(x)\cos\theta$…
POINT 直交曲線座標系の微分公式(grad, div, rot)の一般式を導出する. 計算方法が丁寧に記されているものが見つからなかったので,詳しく計算してみました.もっと簡単な方法が見つかれば追記します.微分形式を使った方法については以下を参照してくださ…
POINT 作成中...(未完成,未検算) ベクトルラプラシアンの計算方法と注意点. ベクトルラプラシアンとは 一般式 円筒座標 極座標 参考文献/記事 ベクトルラプラシアンとはベクトルラプラシアンベクトル場(ベクトル値関数)$\boldsymbol{A}(\boldsymbol…
POINT 作成中... 計算ルール 計算例 反変ベクトル リーマン曲率テンソル 参考文献 計算ルール 成分への作用:$\boldsymbol{\nabla}_\mu T^{\alpha_1\cdots \alpha_p}_{\:\:\:\:\:\:\:\:\:\:\: \beta_1\cdots \beta_q}=\partial_\mu T^{\alpha_1\cdots \al…