物理学

ちょっと感動した計算

POINT 個人的にすごい!と思った計算の備忘録です. 覚えておくと応用がきくかもしれません. ラプラシアンの計算 ラプラシアンの計算ラプラシアンの計算\begin{aligned} \boldsymbol{\nabla}^2 f(r) &=\biggl( \frac{\mathrm{d}^2}{\mathrm{d} r^2} +\frac{…

軸対称な波動方程式(ベクトルポテンシャル)

POINT 軸対称な場のベクトルポテンシャルが満たす波動方程式を考察する. $\boldsymbol{\nabla}\times\boldsymbol{A}$が$z$軸に対して軸対称性をもち,$(\boldsymbol{\nabla}\times\boldsymbol{A})_{z} = 0$を満たす場合考えます. 円筒座標 極座標 参考文献/…

ベクトルラプラシアン

POINT 作成中...(未完成,未検算) ベクトルラプラシアンの計算方法と注意点. ベクトルラプラシアンとは 一般式 円筒座標 極座標 参考文献/記事 ベクトルラプラシアンとはベクトルラプラシアンベクトル場(ベクトル値関数)$\boldsymbol{A}(\boldsymbol…

共変微分の計算法

POINT 作成中... 計算ルール 計算例 反変ベクトル リーマン曲率テンソル 参考文献 計算ルール 成分への作用:$\boldsymbol{\nabla}_\mu T^{\alpha_1\cdots \alpha_p}_{\:\:\:\:\:\:\:\:\:\:\: \beta_1\cdots \beta_q}=\partial_\mu T^{\alpha_1\cdots \al…

Maxwell方程式の意味

POINT Maxwell方程式は,積分形で考えれば高校物理の電磁気の知識に帰着できる. 流体力学の方程式なども,同様に考えることができる. Maxwell方程式 ファラデーの法則(電磁誘導) クーロンの法則(磁気) アンペールの法則 ガウスの法則 付録 ガウスの発…

関数の平行移動と波動

POINT 関数$y=f(x)$の$x$軸,$y$軸方向の平行移動を表す方法. 波動現象(例えば,音や光)を扱う際,「速度$V$で進む波」を関数で表す必要があります.これは,「関数の平行移動」を用いて表現することができます. 関数の平行移動 x方向 y方向 波 関数の平…

応力テンソルと圧力の関係について

POINT 応力テンソルと圧力の関係. 完全流体 完全流体完全流体における応力は面に垂直に働く「圧力」だけです.圧力は「圧力の働く点」のみに依存し,「圧力の働く面」のとり方には依存しない(すべての方向に同じ値をとる)ことが示せます.したがって,各軸…

速度ポテンシャル(音波)

POINT 流体力学における速度ポテンシャルの音波への適用例. 【関連記事】 [A]流体力学の方程式(運動方程式・連続の方程式・状態方程式) - Notes_JP [B]音波の方程式 - Notes_JP:速度ポテンシャルの導入について丁寧に説明しています. 速度ポテンシャル …

【計算メモ-音波の散乱】James J. Faran Jr., Sound Scattering by Solid Cylinders and Spheres

音波の散乱に関する計算. 運動方程式 連立方程式の形 円筒座標 弾性体(円筒内部) 流体(円筒外部) 応力テンソル(弾性体) $\sigma_{rr}$ $\sigma_{r\theta}$ $\sigma_{rz}$ 境界条件 $p_{\mathrm{i}} + p_{\mathrm{s}} = - \sigma_{rr}$ $u_{\mathrm{i}…

電場の複素表示

記法 電場 パルス $G_{2}(\tau)$ 参考文献 【関連記事】 時間平均 - Notes_JP 記法$g(t)$のフーリエ変換\begin{aligned} \mathcal{F}[g](\Omega) &=\int_{-\infty}^{\infty} g(t) e^{-i\Omega t} \,\mathrm{d}t \end{aligned}$g(\Omega)$のフーリエ逆変換\be…