物理学
POINT 流体力学で現れる物質微分(ラグランジュ微分)の意味について. 物質微分は,流体の流れと一緒に移動する「流体粒子」からみた微分とみなせる. 物質微分の関係式を考察する. 「物質微分」は流体力学で基礎的かつ重要な概念です.最初はとっつきにく…
POINT クリストッフェル記号の定義と性質について. 円筒座標系,極座標系の具体計算を行う. 定義 性質 円筒座標 極座標 参考文献/記事 定義\begin{aligned} \Gamma^{\alpha}_{\:\beta\gamma} &=g^{\alpha\mu} \Gamma_{\mu\beta\gamma} \\ \Gamma_{\alpha\b…
POINT 流体力学において流れを決定する方程式を整理する. 運動方程式(1)は任意の連続物体(流体,弾性体,塑性体)について成り立つ 連続物体の運動量・質量・エネルギーの保存則は,それぞれ運動方程式・連続の方程式・状態方程式に対応します.流体力学で…
POINT 中心力場のシュレーディンガー方程式を解く流れを解説します. ヘルムホルツ方程式も特殊な場合として含まれるので,波動現象(電磁波,音波など)の理解にも役立ちます. Schrödinger方程式 解法(変数分離) 変数分離 角度変数 動径関数 参考文献 【…
POINT フーリエ変換の関係式とその導出を一覧にしました. 定義 逆変換 性質 $f(x+a)$ $e^{iax}f(x)$ $f(ax)$ $\bar{f}(x)$ フーリエ逆変換 偶関数 奇関数 実関数 相関関数・畳み込み フーリエ変換の具体例 指数関数 ガウス関数 デルタ関数 くし型関数 周期…
POINT 単振り子の厳密解とPython(SciPy)の計算結果を比較する. 厳密解の導出を解説する. 数値計算の妥当性を確認するために,2通りの方法 常微分方程式をSciPy(odeint, ode, solve_ivp)を用いて解いたものをプロットする方法 厳密解を楕円積分・楕円関数を…
POINT フックの法則(ひずみテンソル)の座標変換の計算方法. テンソル演算により座標変換の一般式を求めた後,極座標・円筒座標の具体式を計算する. 以下で与えられる,座標変換後の歪テンソルの表式の導出方法です. 歪テンソル(極座標)(wikipedia) …
POINT ディアディック(ダイアド積)の計算方法について解説. 「行列」として計算すればベクトル解析の計算に帰着させることができる. 流体力学や電磁気学におけるベクトル解析の計算で,「ディアディック(ダイアド積)」と呼ばれる量が現れます.いきな…
POINT ガウス積分の計算をまとめました. ガウス積分とは,ガウス関数$e^{-x^2}$の積分のことです.ガウス関数は正規分布を始めとして様々な場面で現れることから,ガウス積分の計算に出くわす機会は頻繁にあります.派生する公式が多いことも特徴の一つです…
POINT テンソルは「ベクトル(と転置ベクトル)」をいくつか与えると「値」を返す関数として理解できる. 例:行列$M$はテンソルである.なぜなら「ベクトル$\boldsymbol{v}$,$^{t}\boldsymbol{w}$」を与えると「値:${}^t\boldsymbol{w}M\boldsymbol{v}$」…
極座標のラプラシアンPOINT 数行でラプラシアン,divを計算する方法(極座標・円筒座標). 面倒な偏微分の計算(連鎖率・チェーンルール・合成関数の微分)は不要. 【前提知識】 極座標・円筒座標のナブラ(grad)の表式. 積分の変数変換の方法(ヤコビアン…
POINT テンソル演算で得られた結果を,ベクトル解析の記法に書き換える方法. テンソル解析ではベクトルの変換則を$\displaystyle A^{\prime\mu}=\frac{\partial x^{\prime\mu}}{\partial x^\nu}A^\nu$で定めるが,この計算で得られる成分はベクトル解析で扱…
POINT 面積・体積の計算を丁寧に解説. 同じ例を複数の方法で計算する方法を紹介. 公式として覚えているものも,同じプロセスで導かれることを見てみましょう.いつでも導出できるようになると便利です.とりあえずは球を中心に作成しました.他の例も,こ…
POINT 微積分を使えば公式を覚えずに済む. 質点の運動に関する公式は,運動方程式から自然に導かれる. 高校で学ぶ物理では,たくさんの公式や解法を覚えなくてはなりません.しかし,高校数学で習う「微積分」と結びつけるだけで,覚えなければならないこ…
POINT 無次元化が必要な理由とその方法についてまとめる. 無次元化の効果(メリット): 方程式に現れる変数が減り,簡単な形になる. 方程式の解が相似になる条件がわかる. 数値計算では,適切な無次元化によって変数が極端に小さい値/大きい値を取ること…
POINT ざっくり言えば,「テンソルの成分」と呼ばれる量を「行列の形」に並べると(表記や計算で)便利なことがある,というのが一つの答え.背景には,もう少し深い性質がある. 主な混乱の原因は,「行列の成分」が「2階のテンソル(1階反変1階共変テンソ…
POINT 基底の変換則から,高階のテンソルの変換則が導かれる. 導出した変換則を一覧として整理した. 以前の記事で, 「線形空間$V$の基底・双対基底の変換則」から,自然に「反変・共変ベクトルの変換則」が導かれること を示しました.この議論を一般化す…
POINT 双対空間は「相対論の共変ベクトル」や「量子力学のブラベクトル」として特に説明なく導入されている. 双対空間を学べば,共変ベクトルの変換則が自然に導かれる. ある線形空間 (ベクトル空間) に対し定義される「双対空間」は,物理の様々な場面で …
POINT 数行でラプラシアンやdivを計算できる方法(曲線座標). 合成関数の微分(連鎖率・チェーンルール)なしで計算できる. より一般の曲線座標(曲がった空間)でも同じ方法が使える. ちまちま偏微分の計算をするのではなく,積分計算に置き換えてしま…
POINT ユークリッド空間の距離を保つ変換は「回転」と「反転」で表される. ミンコフスキー空間の距離を保つ変換はLorentz変換となる. 距離を保つ変換が「回転」と「反転」で表されることはよく知られています.但し,これは「ユークリッド空間」での話です…
POINT 数学的に収束因子が正当化される例の紹介. 物理においては,実験との比較によって正当化される. 物理では,広義積分の計算において収束因子を掛けて収束性を良くし,最後に収束因子の影響を除く操作を行うことがあります.この操作が正当化されるの…
POINT 定義さえ理解しておけば,(派生)公式を覚えなくても計算できる. 具体例として,回転体の表面積の派生公式などを導く. 曲面積の定義 派生公式 球の表面積 グラフの曲面積($X=x$, $Y=y$, $Z=f(x,y)$) $y=f(x)$の回転体($X=x$, $Y=f(x)\cos\theta$…
POINT 位置エネルギーや電位を求める方法. ①基準点まで「自分が」する仕事量を計算する方法と,②基準点から「外力が」する仕事量を計算する方法がある. 例として,一様重力場とクーロン場におけるポテンシャルエネルギーを計算する. 以下のような,ポテン…
POINT スターリングの公式の異なる2つの表式の関係. 統計力学でよく出てくるStirlingの公式について考察します. スターリングの公式の2つの表式 式 (1)の導出 2式の関係について 付録 計算メモ スターリングの公式の2つの表式スターリングの公式(Stirling…
POINT ランダウの記号は,無限小や無限大を議論する際に現れる. 微小量の高次項を表す際,$o(\cdot)$や$O(\cdot)$といった記号が現れます(カリグラフィー$\mathcal{O}$が使われることもあります).例えば,微積分学の教科書の中には,証明の中でこの記号…
POINT 電気回路の基礎知識を整理する. Maxwell方程式から電気回路の公式を導出する. 高校で習う程度の回路の知識が,電磁気学の理論(Maxwell方程式)と回路がどうつながっているの?という疑問を解消する内容にしていく予定です. Kirchhoffの法則 インピ…
POINT 行列表示とは,ベクトル空間の基底を単位ベクトルとみなすこと. 複素数の行列表現・四元数の行列表現・Pauli行列を簡単に導出できることを確かめる. 線形代数や量子力学では「線形写像/演算子を行列表示しなさい」という問題に出会います.この記事…
POINT 1次元の音波を図解する. 図を書く際は,横軸が「位置」か「時間」かをはっきりさせることが重要. この記事では, $\xi$:流体粒子の平衡位置からの変位.バネで言えば,釣り合い位置からの伸びです. $p$:圧力. $\displaystyle v=\frac{\partial\x…
POINT ベッセル関数の関係式. 積分表示 平面波 参考文献 積分表示積分表示 Besselの積分表示: $J_n(x)$$\displaystyle =\frac{1}{2\pi}\int_{0}^{2\pi} \cos\bigl(x\sin\theta-n\theta\bigr)\,\mathrm{d}\theta$ Hansenの積分表示: $J_n(x)$$\displaystyl…
POINT 直交曲線座標系の微分公式(grad, div, rot)の一般式を導出する. 計算方法が丁寧に記されているものが見つからなかったので,詳しく計算してみました.もっと簡単な方法が見つかれば追記します.微分形式を使った方法については以下を参照してくださ…