数学-線形代数
スカラー場 スカラー場の無限小回転 参考文献 スカラー場座標回転$\bm{x} \mapsto \bm{x}^{\prime} = R\bm{x}$に対して,$f\mapsto f^{\prime}$が以下のように変換するとき,$f$をスカラー場という.\begin{aligned} f: & \bm{x} \mapsto f(\bm{x}) \\ f^{\p…
無限小回転と任意の回転の関係について見ていきます. ベクトルの無限小回転 任意の回転 外積の行列表現 回転行列と交代行列の関係 参考文献 ベクトルの無限小回転ベクトル$\bm{\omega}$を回転軸とする回転を考える.ベクトル$\bm{\omega}$の大きさは,時間$…
3次元回転行列も,以下の2次元回転行列と全く同じ方法で導出できます. 回転行列(2次元) - Notes_JP 座標軸周りの回転 任意軸周りの回転(ロドリゲスの回転公式) 関連記事 座標軸周りの回転3次元回転行列($x,y,z$軸周り)\begin{aligned} \begin{cases} …
回転行列をnumpyで実装します.回転行列については以下の記事を参照してください. ➡回転行列(2次元) - Notes_JP 2次元Python (numpy) import numpy as np def rot(vec, theta): vec = vec.reshape(-1, 1) cos, sin = np.cos(theta), np.sin(theta) R = np…
POINT よく使う行列の性質をまとめます. 【関連記事】 ベクトル解析の公式 - Notes_JP 対称行列 逆行列 逆行列 クラメルの公式 例:2×2行列 式変形 重み 対称行列${}^t \!A = A$($a_{ji}=a_{ij}$)を満たす行列を「対称行列」と呼びます.逆行列対称行列の…
【関連記事】 主成分回帰(PCR)・部分最小二乗法(PLS) - Notes_JP 主成分分析(PCA)とは あらすじ 考え方(分散の最大化) 考え方(対角化) 元データの分解 データ行列を使った表現 特異値分解との関係 参考文献 主成分分析(PCA)とはあらすじ1回の測…
POINT Savitzky-Golayの係数を計算するsavgol_coeffsの内容に関するメモ. scipy.signal.savgol_coeffs — SciPy v1.12.0 Manualの計算メモ.思ったよりも単純ではなかった.Referencesの"Ying, and Jing Bai. 2005. Savitzky-Golay smoothing and differenti…
POINT 射影の基本的性質. ベクトルのとても基本的,かつ便利な考え方です.この記事で紹介するのは,慣れればどれも当たり前に感じられる性質です. この考え方は,フーリエ級数などでも役に立ちます. 射影 基底による展開 直交成分 グラム・シュミットの…
POINT 座標軸を回転させるとき,「基底は同じ方向に回転」し,「ベクトルは逆方向に回転」する. 基底の変換則,ベクトルの変換則を導く. 結果をまとめておきます($R(\theta)$は回転行列). 変換則(ベクトル表記) 変換則(成分表記) 基底 $\boldsymbol{e}_…
3点を通る円POINT 円の通る3点から中心・半径を求める一般式を導出する. 計算フォーム・Excelにコピペして使えるフォーマットもあります. 単純な「連立方程式」の問題ですが,一般解は少し複雑な形になります. 計算フォーム Excel用フォーマット 導出 円…
POINT テンソルは「ベクトル(と転置ベクトル)」をいくつか与えると「値」を返す関数として理解できる. 例:行列$M$はテンソルである.なぜなら「ベクトル$\boldsymbol{v}$,$^{t}\boldsymbol{w}$」を与えると「値:${}^t\boldsymbol{w}M\boldsymbol{v}$」…
POINT ざっくり言えば,「テンソルの成分」と呼ばれる量を「行列の形」に並べると(表記や計算で)便利なことがある,というのが一つの答え.背景には,もう少し深い性質がある. 主な混乱の原因は,「行列の成分」が「2階のテンソル(1階反変1階共変テンソ…
POINT 基底の変換則から,高階のテンソルの変換則が導かれる. 導出した変換則を一覧として整理した. 以前の記事で, 「線形空間$V$の基底・双対基底の変換則」から,自然に「反変・共変ベクトルの変換則」が導かれること を示しました.この議論を一般化す…
POINT 双対空間は「相対論の共変ベクトル」や「量子力学のブラベクトル」として特に説明なく導入されている. 双対空間を学べば,共変ベクトルの変換則が自然に導かれる. ある線形空間 (ベクトル空間) に対し定義される「双対空間」は,物理の様々な場面で …
POINT ユークリッド空間の距離を保つ変換は「回転」と「反転」で表される. ミンコフスキー空間の距離を保つ変換はLorentz変換となる. 距離を保つ変換が「回転」と「反転」で表されることはよく知られています.但し,これは「ユークリッド空間」での話です…
POINT 回転行列は,ベクトルを原点周りに回転したベクトルに写す. 回転行列は図をかくと簡単に導出できる. 回転行列を簡単に導出する方法を紹介します.この方法を知っておくと,プログラムで計算したいときにすぐ求められて便利です. ➡Pythonでの実装例…
POINT 対角化の操作は,基底の変換(座標変換)に相当する. 行列の対角化の公式を「行列表示」の考え方で簡単に導く. 対角行列 定義 性質 対角化 対角化とは? なぜ必要? $P^{-1}AP$の意味は? 行列表示によるアプローチ 対角行列であるための条件 対角行…
POINT 行列表示とは,ベクトル空間の基底を単位ベクトルとみなすこと. 複素数の行列表現・四元数の行列表現・Pauli行列を簡単に導出できることを確かめる. 線形代数や量子力学では「線形写像/演算子を行列表示しなさい」という問題に出会います.この記事…