数学

線形回帰

POINT 線形単回帰,線形重回帰の概説. 性質を全て調べるのはなかなか大変です.【関連記事】 最小二乗法の計算(理論) - Notes_JP 分散分析 - Notes_JP 線形回帰 問題設定 標準的仮定 パラメータの推定方法 用語 単回帰 重回帰 最小2乗法 最尤法 回帰係数…

母比率(信頼区間・検定)

POINT 母集団に知りたい性質を持つものが「ある比率」で含まれるときに,無作為標本で比率を推定する方法. 母比率(知りたい真の値)を$p$とするとき,すべての標本が確率$p$で性質をもつと考えれば,「ベルヌーイ母集団からの無作為標本」と考えることがで…

正規分布の覚え方

POINT 正規分布の性質について. 忘れたときに,順に導く方法. 忘れたときに,どのような順序で考えればよいかを整理します. 【関連記事】 [A] ガウス積分と派生公式 - Notes_JP:ガウス積分に慣れていない場合はこの記事を参考にしてください. 正規分布…

「数列」の上極限・下極限・極限

POINT 数列の上極限(limsup)・下極限(liminf)について. 級数の収束半径などで現れます.$\epsilon$-$N$論法の良い練習になります.$\inf, \sup$の性質(定義)さえわかっていれば,必要に応じて導けると思います.コンパクトな内容にしようと思っていま…

PythonでUnscented Kalman Filter (UKF)

以下の書籍の例をPythonで試しました.カルマンフィルタの基礎作者:足立修一,丸田一郎東京電機大学出版局Amazon【関連記事】 Pythonで拡張カルマンフィルタ - Notes_JP Unscented Kalman Filter (UKF) numpyによる実装 物体の落下運動(拡張カルマンフィルタ…

Pythonで拡張カルマンフィルタ

以下の書籍の例をPythonで試しました. また,拡張カルマンフィルタを使うと,(当然)線形カルマンフィルタの例も計算できることを確かめます.カルマンフィルタの基礎作者:足立修一,丸田一郎東京電機大学出版局Amazon【関連記事】 PythonでUnscented Kalma…

savgol_coeffs(scipy)のメモ(Savitzky-Golay)

POINT Savitzky-Golayの係数を計算するsavgol_coeffsの内容に関するメモ. scipy.signal.savgol_coeffs — SciPy v1.12.0 Manualの計算メモ.思ったよりも単純ではなかった.Referencesの"Ying, and Jing Bai. 2005. Savitzky-Golay smoothing and differenti…

【読書メモ】ガロアの夢―群論と微分方程式(久賀道郎 )

POINT 東大教養学部のゼミ「群論と微分方程式」の講義録. 各章が短くて進めやすい(第9週は2ページ!) 【関連】読書メモ - Notes_JP.東大教養学部のゼミ「群論と微分方程式」の講義録だそうです.出席した学生の中から,数学者になった方もいるそうです.…

点と直線の距離・点と平面の距離

POINT 点と直線の距離,点と平面の距離を導く. イメージ重視の説明にしています. 簡単に覚えて,いつでも思い出せる手法です. 法線ベクトル 点と曲面の距離 点と直線の距離 点と平面の距離 法線ベクトル法線ベクトル曲面$f (\boldsymbol{x}) = 0$を考える…

「集合」の上極限・下極限・極限

POINT 上極限集合,下極限集合を使うための練習. 面倒臭がらずに定義に戻って考えればわかります.証明できるようになると同時に,直感的な意味も把握しておくと性質を思い出しやすいです. 【関連記事】 [A] 「数列」の上極限・下極限・極限 - Notes_JP:…

スリーヒットダイス | 条件付き期待値による計算法

賭ケグルイ双というマンガに「スリーヒットダイス」というゲームがあります.賭ケグルイ双 1巻 (デジタル版ガンガンコミックスJOKER)作者:河本ほむら,斎木桂スクウェア・エニックスAmazon このゲームを単純にすると,ゲーム内容 2プレーヤーが「連続する3回…

条件付き期待値とは?定義と計算例

POINT 条件付き期待値とは,「ある事象が起きたという条件のもとでの期待値」のことです. 計算を事象ごとに分割することで,複雑な期待値の問題を簡単に解けます. この記事では,「条件付き期待値とは何か?」を直感的に理解できるように具体例を使って丁…

幾何分布の期待値|成功するまでの試行回数とコンプガチャ問題の計算方法

成功するまでの試行回数の期待値(幾何分布の期待値)を複数の方法で解説.確率pの試行やコンプガチャ問題の計算方法を大学生や競技プログラマー向けに丁寧に紹介します.

条件付き期待値とは?関係式の導出から具体例まで丁寧に解説

条件付き期待値とは,「ある事象が起きたという条件の下での期待値」です.この記事では,条件付き期待値の意味や公式の導出方法を,サイコロを使った具体例を交えて丁寧に解説します.また,条件付き期待値を活用することで複雑な確率問題を簡単に解くコツ…

床関数・天井関数と関係式

POINT 床関数・天井関数の定義 競技プログラミングでよく使われる関係式の導出 分数のところの関係式が競技プログラミング(AtCoder,蟻本など)のコードでよく使われています.検索しても欲しい記事が出てこないので,自分で考えました. 床関数 天井関数 …

離散フーリエ変換(DFT)

POINT 離散フーリエ変換(DFT)に関するまとめ. 計算機では有限個の離散データしか扱えない.そこで,有限個の離散データを周期的に拡張して扱う. 非周期的なデータは扱えず,周期的なデータとなる. フーリエ変換は離散フーリエ変換(DFT)として扱い,高…

ベクトルの射影と直交化

POINT 射影の基本的性質. ベクトルのとても基本的,かつ便利な考え方です.この記事で紹介するのは,慣れればどれも当たり前に感じられる性質です. この考え方は,フーリエ級数などでも役に立ちます. 射影 基底による展開 直交成分 グラム・シュミットの…

座標軸の回転と変換則

POINT 座標軸を回転させるとき,「基底は同じ方向に回転」し,「ベクトルは逆方向に回転」する. 基底の変換則,ベクトルの変換則を導く. 結果をまとめておきます($R(\theta)$は回転行列). 変換則(ベクトル表記) 変換則(成分表記) 基底 $\boldsymbol{e}_…

鞍点法

POINT 鞍点法(鞍部点法,最急降下(線)法)の計算について. 解析関数と鞍点 鞍点法 例 参考記事/文献 解析関数と鞍点解析関数(正則関数)$f$の実部と虚部をそれぞれ$u$, $v$と表す($f=u+iv$)ときCauchy-Riemannの方程式\begin{aligned} \frac{\partial…

【読書メモ】ベイズ推論による機械学習入門(須山敦志)

以下の書籍のメモです.目的は, 見通しが良い形で書き換えたい:かなり丁寧に解説してくれている分,後から見返したときに見通しが悪い部分があるため. 省略されている計算・ロジックのフォロー. です.1, 2章は必要になったときに参照し,3章から読むと…

三角不等式

三角不等式以下の関係式を「三角不等式」と呼びます:三角不等式\begin{aligned} |\vec{x}+\vec{y}| \leq |\vec{x}| + |\vec{y}| \end{aligned} 三角不等式を使うと,次の派生公式を導くことができます.\begin{aligned} |\vec{x}| &= \bigl|(\vec{x} + \vec…

【高校数学】二項定理・多項定理

POINT 二項定理のポイントは「場合の数」. 式の展開に「組み合わせ」を表す$\displaystyle {}_n\mathrm{C}_k=\frac{n!}{k!(n-k)!}$が現れる理由を理解することが重要. 多項定理も全く同じように理解できる. 二項定理 多項定理 二項定理二項定理\begin{ali…

ベルヌーイ分布から多項分布へ

POINT ベルヌーイ分布を一般化し,多項分布を得る. 末尾の参考文献[1]の行間を埋めた記事です.ベルヌーイ分布を一般化して多項分布へ至る方法として,2通りの方法 ベルヌーイ分布→二項分布→多項分布 ベルヌーイ分布:コイン(2面サイコロ)を1回投げる. …

三角形の重心をベクトルで表す

POINT 三角形の重心をベクトルで表す方法. 内分点と外分点 重心 内分点と外分点2点$\rm{A}$, $\rm{B}$を結ぶ直線上の点を$\rm{P}$とするとき,\begin{aligned} \overrightarrow{\rm{OP}} &=\overrightarrow{\rm{OA}} + t\cdot\overrightarrow{\rm{AB}} \\ &…

【高校数学】平方完成

POINT 平方完成を使うことで,2次方程式の解の公式が導ける. 「平方完成」は2次方程式を解くときだけでなく,数式を扱う際には(大学でも)よく現れます. 単なる計算テクニックなので,何度かやって慣れてしまいましょう.平方完成を使う例として,ガウス…

三角関数の合成と一般化

POINT 複数の三角関数の和を計算する. 物理的には,単振動を複数合成することを意味する. オイラーの公式を用いて導出することもできる. 三角関数の合成 複数の三角関数 複素指数関数を使う方法 参考文献 三角関数の合成まずは,$\sin$と$\cos$の合成公式…

フーリエ変換の公式と導出

POINT フーリエ変換の関係式とその導出を一覧にしました. 定義 逆変換 性質 $f(x+a)$ $e^{iax}f(x)$ $f(ax)$ $\bar{f}(x)$ フーリエ逆変換 偶関数 奇関数 実関数 相関関数・畳み込み フーリエ変換の具体例 指数関数 ガウス関数 デルタ関数 くし型関数 周期…

バームクーヘン積分とは?回転体の体積を求める公式・図解・導出

バームクーヘン積分を用いた回転体の体積の求め方を分かりやすく解説.公式の導出や幾何的な意味を図と式を用いて丁寧に説明.

ガウス積分と派生公式

POINT ガウス積分の計算をまとめました. ガウス積分とは,ガウス関数$e^{-x^2}$の積分のことです.ガウス関数は正規分布を始めとして様々な場面で現れることから,ガウス積分の計算に出くわす機会は頻繁にあります.派生する公式が多いことも特徴の一つです…

最小二乗法の計算(理論)

POINT 最小二乗法の計算を解説. 最小二乗法の計算について紹介します.微分法による極値問題の一例としても良い題材です.この記事では細かい部分を詰めることはせず,ざっくりとした計算の流れを整理することを目的とします.【関連記事】 線形回帰 - Note…