物理学

鞍点法

POINT 鞍点法(鞍部点法,最急降下(線)法)の計算について. 解析関数と鞍点 鞍点法 例 参考記事/文献 解析関数と鞍点解析関数(正則関数)$f$の実部と虚部をそれぞれ$u$, $v$と表す($f=u+iv$)ときCauchy-Riemannの方程式\begin{aligned} \frac{\partial…

【読書メモ】熱力学(田崎晴明)

自分が理解しやすいように言い換えたり,解釈を加えたりしたメモです(重要事実の列挙,ロジックの補完,気になった計算など). 【関連記事】 示量性と示強性(熱力学) - Notes_JP 熱力学―現代的な視点から (新物理学シリーズ)作者:田崎 晴明発売日: 2000/…

合成関数の微分-記法と混乱しない方法

POINT 合成関数を簡略化して書くと,計算で混乱を生じ得る. 混乱した場合は「簡略化の記法をやめて,定義に戻って考える」と良い. 以前から,これ混乱しない?と思っていたので記事にしました.そもそも「簡略化した記法」を使うことが多すぎて,「簡略化…

【高校物理】ドップラー効果(音波)

POINT ドップラー効果の問題を統一的に考える方法. 「振動数」=「単位時間あたりの波の数」がポイント. 観測者が単位時間に観測する「波の数」を調べれば良い. 高校物理の内容です.ドップラー効果が,全て同じ方法(単位時間に観測する「波の数」を数え…

【高校物理】波長・速度・振動数の関係

POINT 波動現象の波長・速度・振動数の関係を整理します. 「振動数=単位時間にだす波の個数」,「速度=1単位時間に発せられた波が占める領域の長さ」. この記事では,「波の進む速さ」を$V$で表します.注(わかる人向け): 文字に単位をつける記法(「…

Schrödinger方程式(時間変化する井戸型ポテンシャル)

POINT Schrödinger方程式. 井戸の幅が時間変化する問題. 昔やった計算のメモ.まだ途中.... 問題設定 無次元化 変数分離 固有エネルギーと固有関数 時間発展 位置の期待値 問題設定問題質量$m$の粒子が \begin{align} V(x) &= \begin{cases} \,0 & (0\…

球に関係する積分

POINT 球が積分領域など,何らかの形で関わる積分計算のメモ. 分類の仕方は暫定です.増えてきたらまた考えます. 【関連記事】 曲面積の求め方 - Notes_JP:球の表面積 Helmholtz方程式関連 Helmholtz方程式関連LAMB, HYDRODYNAMICS, SIXTH EDITION, DOVER…

【旧版】定常波・定在波の性質

POINT 定常波・定在波の性質について考察する. 自由端反射と固定端反射による定常波の特徴. 意外とちゃんと考えたことがなかったので,丁寧に考察してみました.【関連記事】 [A]定常波・定在波の性質 - Notes_JP:この記事を複素表記$Ae^{i(\omega t - kx…

時間平均

POINT 関数の時間平均について. 時間的に周期性を持つ関数の長時間平均はゼロになる. 時間平均 周期関数 実効値 時間平均時間平均時間を変数とする関数$f$の「時間平均」を\begin{aligned} \langle f\rangle =\frac{1}{T}\int_0^T f(t)\,\mathrm{d}t \end{…

物質微分の意味と関係式(流体力学)

POINT 流体力学で現れる物質微分(ラグランジュ微分)の意味について. 物質微分は,流体の流れと一緒に移動する「流体粒子」からみた微分とみなせる. 物質微分の関係式を考察する. 「物質微分」は流体力学で基礎的かつ重要な概念です.最初はとっつきにく…

クリストッフェル記号

POINT クリストッフェル記号の定義と性質について. 円筒座標系,極座標系の具体計算を行う. 定義 性質 円筒座標 極座標 参考文献/記事 定義\begin{aligned} \Gamma^{\alpha}_{\:\beta\gamma} &=g^{\alpha\mu} \Gamma_{\mu\beta\gamma} \\ \Gamma_{\alpha\b…

流体力学の方程式(運動方程式・連続の方程式・状態方程式)

POINT 流体力学において流れを決定する方程式を整理します. 連続物体の運動量・質量・エネルギーの保存則は,それぞれ運動方程式・連続の方程式・状態方程式に対応します.流体力学では,これらの方程式から未知数を決定することになります. 【関連記事】 …

シュレーディンガー方程式(中心力場)

POINT 中心力場のシュレーディンガー方程式を解く流れを解説します. ヘルムホルツ方程式も特殊な場合として含まれるので,波動現象(電磁波,音波など)の理解にも役立ちます. Schrödinger方程式 解法(変数分離) 変数分離 角度変数 動径関数 参考文献 【…

フーリエ変換の公式と導出

POINT フーリエ変換の関係式とその導出. 【関連記事】 畳み込み - Notes_JP 離散フーリエ変換(DFT) - Notes_JP 定義 逆変換 性質 よく使う関係式 偶関数・奇関数の場合 計算例 指数関数 ガウス関数 デルタ関数 2πの付け方の違い 全体の定数倍 係数の定数…

Python(SciPy)で単振り子

POINT 単振り子の厳密解とPython(SciPy)の計算結果を比較する. 厳密解の導出を解説する. 数値計算の妥当性を確認するために,2通りの方法 常微分方程式をSciPy(odeint, ode, solve_ivp)を用いて解いたものをプロットする方法 厳密解を楕円積分・楕円関数を…

フックの法則/ひずみテンソルの座標変換(極座標・円筒座標)

POINT フックの法則(ひずみテンソル)の座標変換の計算方法. テンソル演算により座標変換の一般式を求めた後,極座標・円筒座標の具体式を計算する. 以下で与えられる,座標変換後の歪テンソルの表式の導出方法です. 歪テンソル(極座標) 歪テンソル(…

ディアディック(ダイアド積)の計算

POINT ディアディック(ダイアド積)の計算方法について解説. 「行列」として計算すればベクトル解析の計算に帰着させることができる. 流体力学などのベクトル解析の計算では,「ディアディック(ダイアド積)」と呼ばれる量が現れることがあります.いき…

ガウス積分と派生公式

POINT ガウス積分の計算をまとめました. ガウス積分とは,ガウス関数$e^{-x^2}$の積分のことです.ガウス関数は正規分布を始めとして様々な場面で現れることから,ガウス積分の計算に出くわす機会は頻繁にあります.派生する公式が多いことも特徴の一つです…

テンソルは関数として理解できる

POINT テンソルは「ベクトル(と転置ベクトル)」をいくつか与えると「値」を返す関数として理解できる. 例:行列$M$はテンソルである.なぜなら「ベクトル$\boldsymbol{v}$,$^{t}\boldsymbol{w}$」を与えると「値:${}^t\boldsymbol{w}M\boldsymbol{v}$」…

ラプラシアン(極座標・円筒座標)の計算はヤコビアンを使うと簡単

POINT 数行でラプラシアン,divを計算する方法(極座標・円筒座標). 面倒な偏微分の計算(連鎖率・チェーンルール・合成関数の微分)は不要. 【前提知識】 極座標・円筒座標のナブラ(grad)の表式. 積分の変数変換の方法(ヤコビアンの計算方法). ガウ…

「テンソル記法」から「ベクトル解析の記法」への変換方法

POINT テンソル演算で得られた結果を,ベクトル解析の記法に書き換える方法. テンソル解析ではベクトルの変換則を$\displaystyle A^{\prime\mu}=\frac{\partial x^{\prime\mu}}{\partial x^\nu}A^\nu$で定めるが,この計算で得られる成分はベクトル解析で扱…

【実用例】面積・体積の計算法

POINT 面積・体積の計算を丁寧に解説. 同じ例を複数の方法で計算する方法を紹介. 公式として覚えているものも,同じプロセスで導かれることを見てみましょう.いつでも導出できるようになると便利です.とりあえずは球を中心に作成しました.他の例も,こ…

【高校物理】力学〜微積分を使おう

POINT 微積分を使えば公式を覚えずに済む. 質点の運動に関する公式は,運動方程式から自然に導かれる. 高校で学ぶ物理では,たくさんの公式や解法を覚えなくてはなりません.しかし,高校数学で習う「微積分」と結びつけるだけで,覚えなければならないこ…

無次元化が必要な理由と方法〜数値計算の疑問

POINT 無次元化が必要な理由とその方法についてまとめる. 無次元化の効果(メリット): 方程式に現れる変数が減り,簡単な形になる. 方程式の解が相似になる条件がわかる. 数値計算では,適切な無次元化によって変数が極端に小さい値/大きい値を取ること…

テンソルと行列が混同される理由

POINT ざっくり言えば,「テンソルの成分」と呼ばれる量を「行列の形」に並べると(表記や計算で)便利なことがある,というのが一つの答え.背景には,もう少し深い性質がある. 主な混乱の原因は,「行列の成分」が「2階のテンソル(1階反変1階共変テンソ…

テンソルの変換則とその導出

POINT 基底の変換則から,高階のテンソルの変換則が導かれる. 導出した変換則を一覧として整理した. 以前の記事で, 「線形空間$V$の基底・双対基底の変換則」から,自然に「反変・共変ベクトルの変換則」が導かれること を示しました.この議論を一般化す…

反変・共変ベクトルの変換則〜双対空間から理解する

POINT 双対空間は「相対論の共変ベクトル」や「量子力学のブラベクトル」として特に説明なく導入されている. 双対空間を学べば,共変ベクトルの変換則が自然に導かれる. ある線形空間 (ベクトル空間) に対し定義される「双対空間」は,物理の様々な場面で …

ラプラシアンの計算はヤコビアンを使うと簡単

POINT 数行でラプラシアンやdivを計算できる方法(曲線座標). 合成関数の微分(連鎖率・チェーンルール)なしで計算できる. より一般の曲線座標(曲がった空間)でも同じ方法が使える. ちまちま偏微分の計算をするのではなく,積分計算に置き換えてしま…

等長変換:回転・反転・Lorentz変換

POINT ユークリッド空間の距離を保つ変換は「回転」と「反転」で表される. ミンコフスキー空間の距離を保つ変換はLorentz変換となる. 距離を保つ変換が「回転」と「反転」で表されることはよく知られています.但し,これは「ユークリッド空間」での話です…

【例】収束因子

POINT 数学的に収束因子が正当化される例の紹介. 物理においては,実験との比較によって正当化される. 物理では,広義積分の計算において収束因子を掛けて収束性を良くし,最後に収束因子の影響を除く操作を行うことがあります.この操作が正当化されるの…